Open Access
E3S Web Conf.
Volume 362, 2022
BuildSim Nordic 2022
Article Number 11002
Number of page(s) 8
Section Weather Adaptation
Published online 01 December 2022
  1. Arumägi, E. and Kalamees, T. (2014). Analysis of energy economic renovation for historic wooden apartment buildings in cold climates. Applied energy (115), 540–548. [CrossRef] [Google Scholar]
  2. Bastin J.F., Clark E., Elliott T., Hart S., van den Hoogen, J., et al. (2019). Understanding climate change from a global analysis of city analogues. PLOS ONE 14(7): e0217592. [CrossRef] [PubMed] [Google Scholar]
  3. Beck, Hylke E. et al. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data (5), 180214. [CrossRef] [PubMed] [Google Scholar]
  4. Berggren, B. and Wall, M. (2013). Calculation of thermal bridges in (Nordic) building envelopes - Risk of performance failure due to inconsistent use of methodology. Energy and buildings (65), 331–339. [CrossRef] [Google Scholar]
  5. Bonakdar, F. and Sasic Kalagasidis, A. (2017). An optimum renovation strategy for Swedish singlefamily house envelopes: The implications of climate zones and the age of the houses. European Council for an Energy Efficient Economy (ECEEE), 2017 Summer Study on energy efficiency: Consumption, efficiency and limits. Toulon/Hyères (France), 29 May-3 June 2017. [Google Scholar]
  6. Bonakdar, F., Sasic Kalagasidis, A. and Mahapatra, K. (2017). The Implications of Climate Zones on the Cost-Optimal Level and Cost-Effectiveness of Building Envelope Energy Renovation and Space Heat Demand Reduction. Buildings (Basel) 7(4), 39. [CrossRef] [Google Scholar]
  7. Building Research Establishment, BRE (2015). Passivhaus primer: Designer’s guide - A guide for the design team and local authorities. [Google Scholar]
  8. Chartered Institution of Building Services Engineers, The, CIBSE (2017). Guide A: The limits of thermal comfort: avoiding overheating in European buildings. [Google Scholar]
  9. de Wilde, P. and Coley, D. (2012). The implications of a changing climate for buildings. Building and Environment, 55(C), 1–7. [CrossRef] [Google Scholar]
  10. Dodoo, A. and Gustavsson, L. (2015). Energy use and overheating risk of Swedish multi-storey residential buildings under different climate scenarios. Energy (97), 534–548. [Google Scholar]
  11. EnergyPlus (2020). Weather Data. Available at: <>. [Google Scholar]
  12. Fitzpatrick, Matthew C. and Dunn, Robert R. (2019). Contemporary climatic analogs for 540 North American urban areas in the late 21st century. Nature communications 10(1), 1–7. [CrossRef] [PubMed] [Google Scholar]
  13. Jenkins, D.P. et al. (2011). Probabilistic climate projections with dynamic building simulation: Predicting overheating in dwellings. Energy and Buildings 43(7), 1723–1731. [CrossRef] [Google Scholar]
  14. Kesik, T. (2019). Thermal Resilience Design Guide. [Google Scholar]
  15. Liu, L. et al. (2014). Comprehensive investigation on energy retrofits in eleven multi-family buildings in Sweden. Energy and Buildings (84), 704–715. [CrossRef] [Google Scholar]
  16. Liu, L., Rohdin, P. and Moshfegh, B. (2015). Evaluating indoor environment of a retrofitted multi-family building with improved energy performance in Sweden. Energy and Buildings (102), 32–44. [CrossRef] [Google Scholar]
  17. Mavrogianni, A. et al. (2014). The impact of occupancy patterns, occupant-controlled ventilation and shading on indoor overheating risk in domestic environments. Building and Environment (78), 183–198. [CrossRef] [Google Scholar]
  18. Nik, V.M. and Sasic Kalagasidis, A. (2013). Impact study of the climate change on the energy performance of the building stock in Stockholm considering four climate uncertainties. Building and Environment 60(Feb.), 291–304. [CrossRef] [Google Scholar]
  19. Porritt, S. et al. (2011). Adapting dwellings for heat waves. Sustainable Cities and Society 1(2), 81–90. [CrossRef] [Google Scholar]
  20. Porritt, S.M. et al. (2012). Ranking of interventions to reduce dwelling overheating during heat waves. Energy and Buildings 55(C), 16–27. [CrossRef] [Google Scholar]
  21. Rohdin, P., Molin, A. and Moshfegh, B. (2014). Experiences from nine passive houses in Sweden -Indoor thermal environment and energy use. Building and Environment 71(C), 176–185. [CrossRef] [Google Scholar]
  22. Schwartz, Y., Raslan, R., and Mumovic, D. (2022). Refurbish or replace? The Life Cycle Carbon Footprint and Life Cycle Cost of Refurbished and New Residential Archetype Buildings in London. Energy (248). [Google Scholar]
  23. Socialstyrelsen (2005). SOSFS 2005: 15 Allmänna råd: temperatur inomhus. [Google Scholar]
  24. Statistics Canada (2022). Data tables, 2016 Census. [Google Scholar]
  25. Statistisk sentralbyrå (2022). Statistikkbanken. [Google Scholar]
  26. Statistikmyndigheten (2021). Bostadsbestånd. [Google Scholar]
  27. United States Department of Energy, DOE (2020). 90.1 Prototype Building Models Mid-rise Apartment. [Google Scholar]
  28. United States Department of Energy, DOE (2022). Building Performance Database. [Google Scholar]
  29. United States Energy Information Administration, EIA (2015). 2015 Residential Energy Consumption Survey (RECS). [Google Scholar]
  30. van Hooff, T. et al. (2014). On the predicted effectiveness of climate adaptation measures for residential buildings. Building and Environment (82), 300–316. [CrossRef] [Google Scholar]
  31. van Hooff, T. et al. (2016). Analysis of the predicted effect of passive climate adaptation measures on energy demand for cooling and heating in a residential building. Energy (94), 811–820. [CrossRef] [Google Scholar]
  32. Ville de Montréal (2020a). Profil des ménages des logements: Agglomération de Montréal. [Google Scholar]
  33. Ville de Montréal (2020b). Profil des ménages des logements: Ville de Montréal. [Google Scholar]
  34. Wang, H. and Chen, Q. (2014). Impact of climate change heating and cooling energy use in buildings in the United States. Energy and Buildings 82(C), 428–436. [CrossRef] [Google Scholar]
  35. Whole Building Design Guide, WBDG (2021). Windows and Glazing. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.