Open Access
Issue
E3S Web Conf.
Volume 362, 2022
BuildSim Nordic 2022
Article Number 11003
Number of page(s) 8
Section Weather Adaptation
DOI https://doi.org/10.1051/e3sconf/202236211003
Published online 01 December 2022
  1. Ashley-Smith, J. (2013). Deliverable 4.2 Report on Damage Functions in Relation to Climate Change. City. [Google Scholar]
  2. Benestad, R. (2002). Empirically downscaled temperature scenarios for northern Europe based on a multi-model ensemble. Climate Research 21(2), 105–125. [CrossRef] [Google Scholar]
  3. Brimblecombe, P., and Lankester, P. (2013). Long-term changes in climate and insect damage in historic houses. Studies in Conservation, 58(1), 13–22. [CrossRef] [Google Scholar]
  4. Camuffo, D. (1998). Microclimate for cultural heritage. Elsevier. Amsterdam (Netherlands). [Google Scholar]
  5. Choidis, P., Kraniotis, D., Lehtonen, I., and Helium, B. (2021). A Modelling Approach for the Assessment of Climate Change Impact on the Fungal Colonization of Historic Timber Structures. Forests 12(7), 819. [CrossRef] [Google Scholar]
  6. Christensen, J., Räisänen, J., Iversen, T., Bjøge, D. Christensen, O., and Rummukainen, M. (2001). A synthesis of regional climate change simulations—a Scandinavian perspective. Geophysical Research Letters 28(6), 1003–1006. [CrossRef] [Google Scholar]
  7. Hanssen-Bauer, I., Drange, H., Førland, E., Roald, L., Børsheim, K., Hisdal, H., Lawrence, D., Nesje, A., Sandven, S., and Sorteberg, A. (2009). Climate in Norway 2100. Background information to NOU Climate adaptation (In Norwegian: Klima i Norge 2100. Bakgrunnsmateriale til NOU Klimatilplassing), Oslo: Norsk klimasenter. [Google Scholar]
  8. Hanssen-Bauer, I., Førland, E. J., Haugen, J. E., and Tveito, O. E. (2003). Temperature and precipitation scenarios for Norway: comparison of results from dynamical and empirical downscaling. Climate Research 25(1), 15–27. [CrossRef] [Google Scholar]
  9. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., and Schepers, D. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999–2049. [CrossRef] [Google Scholar]
  10. Huerto-Cardenas, H. E., Aste, N., Del Pero, C., Della Torre, S., and Leonforte, F. (2021). Effects of climate change on the future of heritage buildings: case study and applied methodology. Climate 9(8), 132. [CrossRef] [Google Scholar]
  11. Huijbregts, Z., Kramer, R., Martens, M., Van Schijndel, A., and Schellen, H. (2012). A proposed method to assess the damage risk of future climate change to museum objects in historic buildings. Building and Environment 55, 43–56 [CrossRef] [Google Scholar]
  12. Hukka, A., and Viitanen, H. (1999). A mathematical model of mould growth on wooden material. Wood Science and Technology, 33(6), 475–485. [CrossRef] [Google Scholar]
  13. Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., Braun, A., Colette, A., Déqué, M., and Georgievski, G. (2014). EURO-CORDEX: new high-resolution climate change projections for European impact research. Regional environmental change, 14(2), 563–578. [CrossRef] [Google Scholar]
  14. Martens, M. H. J. (2012). Climate risk assessment in museums. Eindhoven University of Technology. [Google Scholar]
  15. Mecklenburg, M. F., Tumosa, C. S., and Erhardt, W. D. (1998). Structural response of painted wood surfaces to changes in ambient relative humidity. In Painted Wood: History and Conservation. Los Angeles (USA). [Google Scholar]
  16. Michalski, S. W. (2002). Degree drop, more than double the life for each halving of relative humidity. [Google Scholar]
  17. Ojanen, T., Viitanen, H., Peuhkuri, R., Lähdesmäki, K., Vinha, J., and Salminen, K. (2010). Mold growth modeling of building structures using sensitivity classes of materials. Presented at 11th International Conference on Thermal Performance of the Exterior Envelopes of Whole Buildings, Buildings XI. [Google Scholar]
  18. Rajčić, V., Skender, A., and Damjanovič, D. (2018). An innovative methodology of assessing the climate change impact on cultural heritage. International Journal of Architectural Heritage 12(1), 21–35. [CrossRef] [Google Scholar]
  19. Silva, H. E., and Henriques, F. M. (2015). Preventive conservation of historic buildings in temperate climates. The importance of a risk-based analysis on the decision-making process. Energy and Buildings 107, 26–36. [CrossRef] [Google Scholar]
  20. Silva, H. E., Henriques, F. M., Henriques, T. A., and Coelho, G. (2016). A sequential process to assess and optimize the indoor climate in museums. Building and Environment 104, 21–34. [CrossRef] [Google Scholar]
  21. Vereecken, E., and Roels, S. (2012). Review of mould prediction models and their influence on mould risk evaluation. Building and Environment, 51, 296–310. [CrossRef] [Google Scholar]
  22. Verticchio, E., Frasca, F., Garcìa-Diego, F.-J., and Siani, A. M. (2019). Investigation on the use of passive microclimate frames in view of the climate change scenario. Climate 7(8), 98. [CrossRef] [Google Scholar]
  23. Vici, P. D., Mazzanti, P., and Uzielli, L. (2006). Mechanical response of wooden boards subjected to humidity step variations: climatic chamber measurements and fitted mathematical models. Journal of Cultural Heritage 7(1), 37–48. [CrossRef] [Google Scholar]
  24. Viitanen, H., Krus, M., Ojanen, T., Eitner, V., and Zirkelbach, D. (2015). Mold risk classification based on comparative evaluation of two established growth models. Energy Procedia 78, 1425–1430. [CrossRef] [Google Scholar]
  25. Viitanen, H., and Ojanen, T. (2007). Improved model to predict mold growth in building materials. Thermal Performance of the Exterior Envelopes of Whole BuildingsX-Proceedings CD, 2–7. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.