Open Access
Issue
E3S Web Conf.
Volume 362, 2022
BuildSim Nordic 2022
Article Number 11005
Number of page(s) 7
Section Weather Adaptation
DOI https://doi.org/10.1051/e3sconf/202236211005
Published online 01 December 2022
  1. Altendorf, D., Grünewald, H., Liu, T. L., Dehnert, J., Trabitzsch, R., & Weiss, H. (2022). Decentralised ventilation efficiency for indoor radon reduction considering different environmental parameters. Isotopes in Environmental and Health Studies. https://doi.org/10.1080/10256016.2022.2047960 [Google Scholar]
  2. Åse Lekang Sørensen, I.A., Harald Taxt Walnum, Maria Justo-Alonso, Selamawit Mamo Fufa, Bjørn Jenssen, Olav Rådstoga, Tine Hegli and Henning Fjeldheim. (2017). Pilot Building Powerhouse Kjørbo As Built Report (ISSN 1893-1561). [Google Scholar]
  3. Authority, N. B. (2017). “Forskrift om tekniske krav til byggverk (Byggteknisk forskrift - TEK17). https://dibk.no/globalassets/byggeregler/regulation-on-technical-requirements-for-construction-works--technical-regulations.pdf [Google Scholar]
  4. B. Mahler, R. H. (2008). Results of the evaluation study DeAL decentralized facade integrated ventilation systems. The eighth international conference for enhanced building operations, Berlin, Germany. [Google Scholar]
  5. Baldini, L., Kim, M. K., & Leibundgut, H. (2014). Decentralized cooling and dehumidification with a 3 stage LowEx heat exchanger for free reheating. Energy and Buildings, 76, 270–277. https://doi.org/10.1016/j.enbuild.2014.02.021 [CrossRef] [Google Scholar]
  6. Baldini, L., Meggers, F. (2008). Advanced Distribution and Decentralized supply: A Network approach for minimum pressure losses and maximum comfort. Advanced building ventilation and environmental technology for addressing climate change issues, The 29th AIVC conference, Kyoto, Japan. [Google Scholar]
  7. Bonato, P., D'Antoni, M., & Fedrizzi, R. (2020). Modelling and simulation-based analysis of a facade-integrated decentralized ventilation unit. Journal of Building Engineering, 29. https://doi.org/ARTN10118310.1016/jjobe.2020.101183 [Google Scholar]
  8. Cui, S., Kim, M. K., & Papadikis, K. (2017). Performance Evaluation of Hybrid Radiant Cooling System Integrated with Decentralized Ventilation System in Hot and Humid Climates. Procedia Engineering, 205, 1245–1252. https://doi.org/https://doi.org/10.1016/j.proeng.2017.10.367 [Google Scholar]
  9. Grini, C. C., Mathisen, H.-M., Sartori, I., Haase, M., Sørensen, H. W. J., Petersen, A., Bryn, I., & Wigenstad, T. (2009). LECO. Energibruk i fem kontorbygg i Norge. Befaring og rapportering. [Google Scholar]
  10. Heidt, F. D., Fischer, T., & Thiemann, A. (1998). Energy evaluation of decentralized air-conditioning equipment with heat recovery; Energetische Beurteilung dezentraler Raumlueftungsgeraete mit Waermerueckgewinnung. https://doi.org/https://doi.org/ [Google Scholar]
  11. ISO. (2005). Ergonomics of the thermal environment-Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. In ISO standard 7730:2005. Geneva: ISO. [Google Scholar]
  12. Kim, M. K. (2022). Ventilation system and heating and cooling. Handbook of Ventilation Technology for the Built Environment: Design, Control and Testing, 225. [Google Scholar]
  13. Kim, M. K., & Baldini, L. (2016). Energy analysis of a decentralized ventilation system compared with centralized ventilation systems in European climates: Based on review of analyses. Energy and Buildings, 111, 424–433. https://doi.org/10.1016/j.enbuild.2015.11.044 [CrossRef] [Google Scholar]
  14. Kim, M. K., & Choi, J. H. (2019). Can increased outdoor CO2 concentrations impact on the ventilation and energy in buildings? A case study in Shanghai, China. Atmospheric Environment, 210, 220–230. https://doi.org/10.1016/j.atmosenv.2019.04.015 [CrossRef] [Google Scholar]
  15. Kim, M. K., Leibundgut, H., & Choi, J. H. (2014). Energy and exergy analyses of advanced decentralized ventilation system compared with centralized cooling and air ventilation systems in the hot and humid climate. Energy and Buildings, 79, 212–222. https://doi.org/10.1016/j.enbuild.2014.05.009 [CrossRef] [Google Scholar]
  16. Manz, H., Huber, H., & Helfenfinger, D. (2001). Impact of air leakages and short circuits in ventilation units with heat recovery on ventilation efficiency and energy requirements for heating. Energy and Buildings, 33(2), 133–139. https://doi.org/https://doi.org/10.1016/S0378-7788(00)00077-3 [CrossRef] [Google Scholar]
  17. Meggers, F., Pantelic, J., Baldini, L., Saber, E., & Kim, M. K. (2013). Evaluating and adapting low exergy systems with decentralized ventilation for tropical climates. Energy and Buildings, 67, 559–567. <Go to ISI>://WOS:000328094000057 [CrossRef] [Google Scholar]
  18. Merzkirch, A., Maas, S., Scholzen, F., & Waldmann, D. (2016). Field tests of centralized and decentralized ventilation units in residential buildings - Specific fan power, heat recovery efficiency, shortcuts and volume flow unbalances. Energy and Buildings, 116, 376–383. https://doi.org/https://doi.org/10.1016/j.enbuild.2015.12.008 [CrossRef] [Google Scholar]
  19. Niu, J. L., Zhang, L. Z., & Zuo, H. G. (2002). Energy savings potential of chilled-ceiling combined with desiccant cooling in hot and humid climates. Energy and Buildings, 34(5), 487–495. <Go toISI>://WOS:000175636100008 [CrossRef] [Google Scholar]
  20. Novoselac, A., & Srebric, J. (2002). A critical review on the performance and design of combined cooled ceiling and displacement ventilation systems. Energy and Buildings, 34(5), 497–509. https://doi.org/PiiS0378-7788(01)00134-7 Doi 10.1016/S0378-7788(01)00134-7 [CrossRef] [Google Scholar]
  21. Ren, J., Liu, J., Zhou, S., Kim, M. K., & Song, S. (2022). Experimental study on control strategies of radiant floor cooling system with direct-ground cooling source and displacement ventilation system: A case study in an office building. Energy, 239, 122410. https://doi.org/https://doi.org/10.1016/j.energy.2021.122410 [CrossRef] [Google Scholar]
  22. Santos, H. R. R., & Leal, V. M. S. (2012). Energy vs. ventilation rate in buildings: A comprehensive scenario-based assessment in the European context. Energy and Buildings, 54, 111–121. https://doi.org/https://doi.org/10.1016/j.enbuild.2012.07.040 [CrossRef] [Google Scholar]
  23. Speer, C., Pfluger, R., Feist, W., Zgaga, J., & Lanthaler, D. (2014). Development of a decentralized compact ventilation system for use in minimally invasive refurbishment. Bauphysik, 36(5), 236–242. https://doi.org/10.1002/bapi.201410034 [CrossRef] [Google Scholar]
  24. Standard, E. (2017). EN 15193-1:2017 Energy performance of buildings — Energy requirements for lighting — Part 1: Specifications, Module M9. In: European Committee for Standardization, CEN-CENELEC Management Centre. [Google Scholar]
  25. Standard, N. (2012). NS 3701:2012, Kriterier for passivhus og lavenergibygninger Yrkesbygninger. In Criteria for passive houses and low energy buildings Non-residential buildings: Standard Norge. [Google Scholar]
  26. Tantasavasdi, C., Srebric, J., & Chen, Q. Y. (2001). Natural ventilation design for houses in Thailand. Energy and Buildings, 33(8), 815–824. https://doi.org/Doi10.1016/S0378-7788(01)00073-1 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.