Open Access
Issue
E3S Web Conf.
Volume 362, 2022
BuildSim Nordic 2022
Article Number 13005
Number of page(s) 8
Section Commissioning and Demand Response
DOI https://doi.org/10.1051/e3sconf/202236213005
Published online 01 December 2022
  1. EU. Energy performance of buildings directive, European Commission Department of Energy, 2020. [Google Scholar]
  2. EU, Directive 2002/91/eC of the European parliament and of the council (Directive No 2003/91/EC) (p. L 1/65-71), European Parliament and Council, 2003. [Google Scholar]
  3. Flemish Authorities, Decreet houdende algemene bepalingen betreffende het energiebeleid, Belgisch Staatsblad - Moniteur Belge, pp. 46145–46191, Brussels: Flemish Authorities, 2009. [Google Scholar]
  4. VEKA, Energiebesluit Bijlage V, 2019. [Google Scholar]
  5. Concerted Action EPBD. Implementing the energy performance of buildings directive (EPBD). Featuring country reports 2012. Porto, 2013. [Google Scholar]
  6. D. Majcen, L. C. M. Itard, H. Visscher, “Theoretical vs. actual energy consumption of labelled dwellings in the Netherlands: Discrepancies and policy implications”, Energy Policy, vol. 54, pp. 125–136, 2013. [CrossRef] [Google Scholar]
  7. M. Sunikka-Blank, R. Galvin, “Introducing the prebound effect: The gap between performance and actual energy consumption”. Building Research & Information, vol. 40(3), pp. 260–273, 2012. [CrossRef] [Google Scholar]
  8. E. Cayre, B. Allibe, M.-H. Laurent, D. Osso, “There are people in the house! How the results of purely technical analysis of residential energy consumption are misleading for energy policies”, in: ECEEE 2011 Summer Study - Energy Efficiency First Found, A Low-Carbon Society, 2011. [Google Scholar]
  9. S. Kelly, D. Crawford-Brown, M. G. Pollitt, “Building performance evaluation and certification in the UK: Id SAP fit for purpose?”, Renewable and Sustainable Energy Reviews, vol. 16, pp. 6861–6878, 2012. [Google Scholar]
  10. S. Cozza, J. Chambers, C. Deb, J.-L. Scartezzini, A. Schlüter, M. K. Patela, “Do energy performance certificates allow reliable predictions of actual energy consumption and savings? Learning from the Swiss national database”, Energy and Buildings, vol. 224, 2020. [Google Scholar]
  11. M. Delghust, W. Roelens, T. Tanghe, Y. De Weerdt, A. Janssens, “Regulatory energy calculations versus real energy use in highperformance houses”. Building Research & Information, vol. 43(6), pp. 675–690, 2015. [CrossRef] [Google Scholar]
  12. Van Hove, M., Delghust, M., Janssens, A. (2021). Analyse naar de haalbaarheid van statistische modellen die energiegebruik in woningen kunnen voorspellen op basis van gebouwparameters. https://www.energiesparen.be/marktonderzoek [Google Scholar]
  13. Open Data Vlaanderen, https://opendata.vlaanderen.be/organization/vlaams-energie-en-klimaatagentschap-veka [Google Scholar]
  14. VEKA, Energy statistics - existing buildings in Flanders. Flemish Energy and Climate Agency (VEKA), 2018. https://www.energiesparen.be/energiestatistieken-bestaande-gebouwen-in-vlaanderen [Google Scholar]
  15. Statbel, Kadastrale statistiek van het gebouwenpark, 2020, https://bestat.statbel.fgov.be/bestat/crosstable.xhtml?view=dade64a8-39c8-498e-9736-16a27ef618a0 [Google Scholar]
  16. Statistics Flanders, Woningvoorraad, Statbel, 2020, https://www.statistiekvlaanderen.be/nl/woningvoorraad [Google Scholar]
  17. Pedregosa, “Scikit-learn: Machine Learning in Python”, JMLR, vol. 12, pp. 2825–2830, 2011. [Google Scholar]
  18. Skipper, Seabold, J. Perktold, “Statsmodel: Econometric and statistical modeling with python”. Proceedings of the 9th Python in Science Conference, 2010. [Google Scholar]
  19. McKinney, Data structures for statistical computing in python, Proceedings of the 9th Python in Science Conference, vol. 445, 2010. [Google Scholar]
  20. K. Rehdanz, “Determinants of residential space heating expenditures in Germany”. Energy Economics, vol. 29, pp. 167–182, 2007. [CrossRef] [Google Scholar]
  21. H. Meier, K. Rehdanz, “Determinants of residential space heating expenditures in Great Britain”, Energy Economics, vol. 32, pp. 949–959, 2010. [CrossRef] [Google Scholar]
  22. D. Brounen, N. Kok, J. M. Quigley, “Residential energy use and conservation: Economics and demographics”, European Economic Review, vol. 56, pp. 931–945, 2012. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.