Open Access
Issue
E3S Web Conf.
Volume 362, 2022
BuildSim Nordic 2022
Article Number 13006
Number of page(s) 9
Section Commissioning and Demand Response
DOI https://doi.org/10.1051/e3sconf/202236213006
Published online 01 December 2022
  1. Aanensen, T. and M. Holstad (2018). Tilgang og anvendelse av elektrisitet i perioden 1993-2017. Rapporter 2018/16, Statistisk sentralbyrå. [Google Scholar]
  2. ASHRAE (2014). Measurement of Energy Demand and Water Savings. Guideline 14. Atlanta, GA, USA, ASHRAE Standards Committee. [Google Scholar]
  3. Chong, A., et al. (2021). Calibrating building energy simulation models: A review of the basics to guide future work. Energy and Buildings 253: 111533. [CrossRef] [Google Scholar]
  4. Clauss, J., et al. (2018). Calibration of a high-resolution dynamic model for detailed investigation of the energy flexibility of a zero emission building. Proceedings from Cold Climate HVAC 2018. Kiruna. [Google Scholar]
  5. DiBK (2021). Klimabaserte energikrav til bygg -Høringssvar. D. f. byggkvalitet. Oslo, Direktoratet for byggkvalitet. 2022. [Google Scholar]
  6. Elhub (2021, 20.01.2021). Elhub and smart meters are enabling a more efficient Norwegian energy system. Retrieved 18.01, 2022 from https://elhub.no. [Google Scholar]
  7. Enova (2019). Forprosjekt Ny energimerkeordning -Hovedrapport. Enova SF. Trondheim. [Google Scholar]
  8. Fitton, R., et al. (2021). Building energy performance assessment based on in-situ measurements Challenges and general framework. Belgium, KU Leuven. [Google Scholar]
  9. Goia, F., et al. (2015). The ZEB Living Laboratory at the Norwegian University of Science and Technology: a zero emission house for engineering and social science experiments. Proceedings from 7th Passivhus Norden - Sustainable Cities and Buildings. Copenhagen. [Google Scholar]
  10. Grassi, B., et al. (2021). Dynamic Approach to Evaluate the Effect of Reducing District Heating Temperature on Indoor Thermal Comfort. Energies 14(1): 25. [Google Scholar]
  11. Lundström, L. (2018). Total solar irradiance according to ISO 52010-1:2017, GitHub. [Google Scholar]
  12. Lundström, L. (2019). Simulating space heating use -using the the ISO14N modelling framework, GitHub. [Google Scholar]
  13. Lundström, L. and J. Akander (2020). Bayesian Calibration with Augmented Stochastic State-Space Models of District-Heated Multifamily Buildings. Energies 13(1): 76. [Google Scholar]
  14. Lundström, L., et al. (2019). Development of a Space Heating Model Suitable for the Automated Model Generation of Existing Multifamily Buildings—A Case Study in Nordic Climate. Energies 12(3): 485. [CrossRef] [Google Scholar]
  15. Manfren, M., et al. (2020). Open data and energy analytics - An analysis of essential information for energy system planning, design and operation. Energy 213: 118803. [CrossRef] [Google Scholar]
  16. OED (2021). Endr. i forskrift om endr. i forskrift om økonomisk og teknisk rapportering, inntektsramme for nettvirksomheten og tariffer. Oljeogenergidepartementet. [Google Scholar]
  17. Ruiz, G. R. and C. F. Bandera (2017). Validation of Calibrated Energy Models: Common Errors. Energies 10(10). [Google Scholar]
  18. Schoutsen, P. (2021). Energy Management in Home Assistant. Announcements. Retrieved 4. April 2022, 2022, from https://www.home-assistant.io/blog/2021/08/04/home-energy-management/. [Google Scholar]
  19. Skeie, K. (2020). Living Lab heating design evaluation, tehnical report, Trondheim, NTNU. [Google Scholar]
  20. Skeie, K. and A. Gustavsen (2021). Utilising Open Geospatial Data to Refine Weather Variables for Building Energy Performance Evaluation—Incident Solar Radiation and Wind-Driven Infiltration Modelling. Energies 14(4). [Google Scholar]
  21. van Dijk, D. (2019). EN ISO 52016-1: The New International Standard To Calculate Building Energy Needs for Heating And Cooling, Internal Temperatures And Heating And Cooling Load, Proceedings from Building Simulation 2019: 16th Conference of IBPSA, Rome. [Google Scholar]
  22. Vogler-Finck, P., Clauß, John, & Georges, Laurent (2017). A dataset to support dynamical modelling of the thermal dynamics of a super-insulated building. Zenodo. [Google Scholar]
  23. Yu, X., et al. (2019). Investigation of the Model Structure for Low-Order Grey-Box Modelling of Residential Buildings., Proceedings from Building Simulation 2019: 16th Conference of IBPSA, Rome. [Google Scholar]
  24. Yu, X., et al. (2022). Influence of data pre-processing and sensor dynamics on grey-box models for spaceheating: Analysis using field measurements. Building and Environment 212: 108832. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.