Open Access
Issue |
E3S Web of Conf.
Volume 365, 2023
IV International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2022)
|
|
---|---|---|
Article Number | 03040 | |
Number of page(s) | 9 | |
Section | Hydraulics of Structures, Hydraulic Engineering and Land Reclamation Construction | |
DOI | https://doi.org/10.1051/e3sconf/202336503040 | |
Published online | 30 January 2023 |
- Bauchau, O.A., Choi, Yu.Yu. and Bottasso, K.L. On modeling shells in the dynamics of several bodies. Dynamics of multibody systems. 2002. Pp. 459-489. [CrossRef] [Google Scholar]
- Shamolin, M.V. Dynamic systems with variable dissipation: approaches, methods and applications. J Math Sci. 162. 741. 2009. https://doi.org/10.1007/s10958-009-9657-y [CrossRef] [Google Scholar]
- Yunesyan, D., Hosseinhani A., Askari H. Elastic and viscoelastic bases: a review of linear and nonlinear vibration modeling and applications. Nonlinear Dyn. Pp. 853-895. 2019. https://doi.org/10.1007/s11071-019-04977-9 [Google Scholar]
- Shah, A.G., Mahmud, T., Naim, M.N. Vibrations of functionally graded cylindrical shells on elastic bases. Acta Mech. 2010. Pp. 293-307. [Google Scholar]
- Lugovoy, P.Z., Meish, V.F. Dynamics of inhomogeneous shell systems under unsteady loading (Review). Int Appl Mech 53. 2017. Pp. 481-537. [CrossRef] [Google Scholar]
- Bespalova, E.I., Urusova, G.P. Determination of the areas of dynamic instability of inhomogeneous shell systems under periodic loads. Int Appl Mech. 2011. [Google Scholar]
- Bespalova, E.I., Urusova, G.P. Vibrations of shells of rotation with a branched meridian. Int Appl Mech 52, Pp.82-89. 2016. https://doi.org/10.1007/s10778-016-0735-9 [CrossRef] [Google Scholar]
- Gavrilenko, G.D., Matsner, V.I., Kutenkova, O.A. Free oscillations of ribbed cylindrical shells with local axisymmetric deflections. Int Appl Mech. Pp.1006-1014. 2008. https://doi.org/10.1007/s10778-009-0116-8 [CrossRef] [Google Scholar]
- Zarutsky, V.A. Theory and methods of analysis of the stress–strain state of ribbed shells. International Applied Mechanics 36. 2000. Pp.1259-1283. [CrossRef] [Google Scholar]
- Atri, H.R., Shoji, S. Analysis of free vibrations of thin-walled structures using finite elements based on an isogeometric approach. Iran. Doctor of Technical Sciences. Technol.Trans. Civ. Eng. 40. 2016. Pp.85-96. https://doi.org/10.1007/s40996-016-0011-6 [CrossRef] [Google Scholar]
- Xie, K., Chen, M. Analytical method for free oscillations of functionally graded cylindrical shells with arbitrary intermediate ring supports. J Braz. Soc. Mechanic. 2021. https://doi.org/10.1007/s40430-021-02829-5 [Google Scholar]
- Mirsaidov M. and Troyanovsky I. E. Forced axisymmetric oscillations of a viscoelastic cylindrical shell. Polymer Mechanics 11(6). 1975. Pp. 953-955. [Google Scholar]
- Mirsaidov, M.M., Khudainazarov, Sh.O. Spatial natural vibrations of viscoelastic axisymmetric structures. Magazine of Civil Engineering. No.04. 2020. 96(4). Pp.118–128. DOI: 10.18720/MCE.96.10 [Google Scholar]
- Mirsaidov M., Abdikarimov R., Khudainazarov S., Sabirjanov T. Damping of vibrations of high-rise structures by viscoelastic dynamic dampers. E3S Web Conference. 2020. 2020. DOI: 10.1051/e3sconf/202022402020 [Google Scholar]
- Sherzod Khudainazarov, Talibjan Sabirjanov and Alisher Ishmatov. Assessment of Dynamic Characteristics of High-Rise Structures Taking into Account Dissipative Properties of the Material. Journal of Physics. 1425. 2020. 012009 doi:10.1088/1742-6596/1425/1/012009 [Google Scholar]
- Tulkin Mavlanov, Sherzod Khudainazarov and Islomjon Khazratkulov. Natural Vibrations Of Structurally Inhomogeneous Multi-Connected Shell Structures With Viscoelastic Elements. Journal of Physics. 1425 012017. 2020. doi:10.1088/1742-6596/1425/1/012017 [Google Scholar]
- Mavlanov T and Khudainazarov Sh. Calculation of structural-inhomogeneous multiply connected shell structures with viscoelastic elements E3S Web of Conferences. Vol. 97. No 040542. 2019. DOI:10.1051/e3sconf/20199704054 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Mirsaidov, M., Safarov, I.I., Teshaev, M.K. Dynamic instability of vibrations of thin-wall composite curvorine viscoelastic tubes under the influence of pulse pressure. E3S Web of Conferences 164(5), 2020, № 1401320 [Google Scholar]
- Mirsaidov, M.M., Safarov, I.I., Teshaev, M.K., Boltayev, Z.I. Dynamics of structural - Inhomogeneous coaxial-multi-layered systems “cylinder-shells”. Journal of Physics: Conference Series, 1706(1), 2020, № 0120331 [CrossRef] [Google Scholar]
- Bagheri, H., Kiani, Y., Eslami, M.R. Free vibration of joined conical–cylindrical–conical shells. Acta Mechanica 229 (7). 2018. 2751-2764. DOI: 10.1007/s00707-018-2133-3 [CrossRef] [Google Scholar]
- Tian, L., Ye, T., Jin, G. Vibration analysis of combined conical-cylindrical shells based on the dynamic stiffness method. Thin-Walled Structures 159. 2021. №107260. DOI: 10.1016/j.tws.2020.107260 [CrossRef] [Google Scholar]
- Mavlyanov, T. Development of methods and algorithms for calculating shell structures, taking into account structural heterogeneity and interaction with various media. Monograph. –T.:TIIIAME. -2019. p.217. [Google Scholar]
- Myachenkov V.I., Maltsev V.P. Methods and algorithms for calculating spatial structures on a computer. - M.: Mechanical Engineering. 1984. - 278 p. [Google Scholar]
- Ilyushin, A.A. Mechanics of Elastic and Plastic Strains of Solids. 2003. Collection of Works. Vol. 1 (1935-1945), Pp.232-272. [Google Scholar]
- Ilyushin, A.A., Vasin, R.A., Mossakovskii, P.A. Theory of Elastoplastic Processes under Large Plastic Strains.Applied Problems of Mechanics of Thin-Walled Structures. 2000. Pp. 128-137. [Google Scholar]
- Georgievskii, D.V., Pobedrya, B.E. Asymptotic analysis of evolution of a neck in extended thin rigid plastic solids. Russian Journal of Mathematical Physics. 23 (2). 2016. Pp. 200-206. [CrossRef] [Google Scholar]
- Pobedria, B.E., Georgievskii, D.V. Two thermodynamic laws as the forth and the fifth integral postulates of continuum mechanics. Studies in Systems. Decision and Control. 69. 2016. Pp. 317-325. [CrossRef] [Google Scholar]
- Maltsev, L.E. Replacing the exact equation of the dynamic viscoelasticity problem with an approximate one. Mechanics of Polymers. No.3. 1977. Pp.408-416. [Google Scholar]
- Koltunov M.A. Creep and relaxation - M.: Vysshaya shkola. 1976. 277 p. [Google Scholar]
- Kravchuk, A.S., Mayboroda, V.P., Urzhumtsev, Yu.S. Mechanics of polymer and composite materials.-M.: Nauka. 1985. p. 304. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.