Open Access
Issue
E3S Web of Conf.
Volume 365, 2023
IV International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2022)
Article Number 04004
Number of page(s) 9
Section Mechanization, Electrification of Agriculture and Renewable Energy Sources
DOI https://doi.org/10.1051/e3sconf/202336504004
Published online 30 January 2023
  1. “Ministry of Water Resources of the Republic of Uzbekistan,” Jun. 12, 2022. https://water.gov.uz/en (accessed Jun. 12, 2022). [Google Scholar]
  2. Concept for the development of the water sector of the Republic of Uzbekistan for 2020–2030. pp. 1–2. Uzbekistan (2020) [Google Scholar]
  3. S. Strebkov, A. Slobodyuk, A. Bondarev, and A. Sakhnov, “Strengthening of cultivator Paws with electrospark doping,” in Engineering for Rural Development, 18, pp. 549–554 (2019) doi: 10.22616/ERDev2019.18.N178. [Google Scholar]
  4. Shukurov R, “Increasing the wear resistance of the cutting bodies of earth-moving machines,” 1, Tashkent Automobile and Road Institute, Tashkent (2005), pp. 1–16. [Google Scholar]
  5. B. K. Norov, S. U. Yuldashev, A. Li, and Z. Sharipov, “Water pump shaft resource recovery technology. In IOP Conference Series: Earth and Environmental Science, 868(1), (2021) doi: 10.1088/1755-1315/868/1/012015 [Google Scholar]
  6. A. Dudnikov, V. Dudnik, O. Ivankova, and O. Burlaka. Substantiation of parameters for the technological process of restoring machine parts by the method of plastic deformation. Eastern-European J. Enterp. Technol., 1(97), pp. 75–80 (2019) doi: 10.15587/1729-4061.2019.156779 [CrossRef] [Google Scholar]
  7. H. Liu. Effect of laser surface texturing depth and pattern on the bond strength and corrosion performance of phosphate conversion coating on magnesium alloy. Opt. Laser Technol., 153, (2022) doi: 10.1016/j.optlastec.2022.108164 [Google Scholar]
  8. W. Cheng, F. Dai, S. Huang, and X. Chen. Plastic deformation behavior of 316 stainless steel subjected to multiple laser shock imprinting impacts. Opt. Laser Technol., 153, (2022) doi: 10.1016/j.optlastec.2022.108201 [Google Scholar]
  9. X. Hu. Rolling contact fatigue behaviors of 25CrNi2MoV steel combined treated by discrete laser surface hardening and ultrasonic surface rolling,” Opt. Laser Technol., 155, (2022) doi: 10.1016/j.optlastec.2022.108370 [Google Scholar]
  10. “Metallisation Ltd homepage,” Metallisation Ltd, May 20, 2021. https://www.metallisation.com/ (2021) [Google Scholar]
  11. J. Jones, P. McNutt, R. Tosi, C. Perry, and D. Wimpenny. Remanufacture of turbine blades by laser cladding, machining and in-process scanning in a single machine. (2012) [Google Scholar]
  12. Rahito D. A. Wahab and A. H. Azman. Additive manufacturing for repair and restoration in remanufacturing: An overview from object design and systems perspectives,” Processes, 7(11). MDPI AG, (2019) doi: 10.3390/pr7110802 [Google Scholar]
  13. O. K. Bityutskih, M. V. Kondratyev, E. V. Smolentsev, and D. M. Chernykh. Application of wear-resistant coatings by plasma-spraying on the surface of parts of a complex shape,” in Materials Today: Proceedings, 38, pp. 1904–1907, (2021) doi: 10.1016/j.matpr.2020.08.592. [CrossRef] [Google Scholar]
  14. A. G. Skhirtladze and V. A. Skryabin, “Technology of Plastic Deformation Repair of Metallurgical Machine Parts,” Russ. Metall., 2018(13), pp. 1301–1305 (2018) [CrossRef] [Google Scholar]
  15. S. Murmu, S. K. Chaudhary, and A. K. Rajak, “Effect of heat treatment on mechanical properties of medium carbon steel welds,” Mater. Today Proc., (2022) doi:10.1016/j.matpr.2022.02.646 [Google Scholar]
  16. R. Ranjan and A. K. Das. A review on surface protective coating using cold spray cladding technique. Mater. Today Proc., 56, pp. 768–773, (2022), doi: 10.1016/j.matpr.2022.02.254 [CrossRef] [Google Scholar]
  17. M. S. Alam and A. K. Das, Advancement in cermet based coating on steel substrate: A review,” Mater. Today Proc., 56, pp. 805–810, (2022), doi:10.1016/j.matpr.2022.02.260 [Google Scholar]
  18. Askinazi B, Strengthening and restoration of machine parts by electromechanical processing, 3, Moscow, Russian Federation (1989) [Google Scholar]
  19. A. V. Bogomolov, A. T. Kanaev, and T. E. Sarsembaeva. Determination of Mechanical Characteristics Plasma Hardened Wheel Steel. In IOP Conference Series: Materials Science and Engineering, 969(1), (2020) doi: 10.1088/1757-899X/969/1/012037 [CrossRef] [Google Scholar]
  20. А. Kanaev, A. Gulyarenko, A. Bogomolov, and T. Sarsembaeva. Analysis of mechanisms for hardening constructional steels by structure parameters. Metalurgija, 61(1), pp. 241–243 (2022) [Google Scholar]
  21. K. S. Chandravathi. Effect of isothermal heat treatment on microstructure and mechanical properties of Reduced Activation Ferritic Martensitic steel. J. Nucl. Mater., 435(1–3), pp. 128–136, (2013) doi: 10.1016/j.jnucmat.2012.12.042 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.