Open Access
Issue
E3S Web of Conf.
Volume 365, 2023
IV International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2022)
Article Number 05014
Number of page(s) 12
Section Engineering Materials Science, Intelligent Transport Systems and Transport Logistics
DOI https://doi.org/10.1051/e3sconf/202336505014
Published online 30 January 2023
  1. R.A.Ibrahim, Overview of Mechanics of Pipes Conveying Fluids—Part I: Fundamental Studies, Journal of Pressure Vessel Technology 132(3) (2010) ID 0340011, DOI:10.1115/1.4001271. [CrossRef] [Google Scholar]
  2. Jan Łuczko, Andrzej Czerwiński, Parametric vibrations of flexible hoses excited by a pulsating fluid flow, Part I: Modelling, solution method and simulation, Journal of Fluids and Structures 55 (2015) 155–173, https://doi.org/10.1016/j.jfluidstructs.2015.02.011. [Google Scholar]
  3. Amir Mehdi Dehrouyeh-Semnani, Esmaeil Dehdashti, Mohammad Reza Hairi Yazdi,Mansour Nikkhah-Bahrami, Nonlinear thermo-resonant behavior of fluid-conveying FG pipes, International Journal of Engineering Science 144 (2019) 103141, https://doi.org/10.1016/j.ijengsci.2019.103141. [Google Scholar]
  4. Yuanhui Wang, Yiming Chen. Shifted Legendre Polynomials algorithm used for the dynamic analysis of viscoelastic pipes conveying fluid with variable fractional order model, Applied Mathematical Modelling 81 (2020) 159–176, https://doi.org/10.1016/j.apm.2019.12.011. [Google Scholar]
  5. Z.Elfelsoufi, L.Azrar Mathematical modeling of the dynamic stability of fluid conveying pipe based on integral equation formulations, International Journal of Pressure Vessels and Piping 146 (2016) 135–150, https://doi.org/10.1016/j.ijpvp.2016.08.001. [Google Scholar]
  6. M.P.Païdoussis, The canonical problem of the fluid conveying pipe and radiation of the knowledge gained to other dynamics problems across applied mechanics, J. Sound and Vibr. 310 (2008) 462–492, DOI: 10.1016/j.jsv.2007.03.065. [CrossRef] [Google Scholar]
  7. Marco Amabili, Francesco Pellicano, Michael P.Païdoussis, Nonlinear dynamics and stability of circular cylindrical shells conveying flowing fluid, Computers and Structures 80 (2002) 899–906, https://doi.org/10.1016/S0045-7949(02)00055-X. [Google Scholar]
  8. M.P. Paidoussis, N.T. Issid, Dynamic stability of pipes conveying fluid, Journal of Sound and Vibration 33(3) (1974) 267–294, https://doi.org/10.1016/S0022-460X(74)80002-7. [Google Scholar]
  9. Jiantao Li, Hua Deng, Wenjun Jiang, Dynamic response and vibration suppression of a cantilevered pipe conveying fluid under periodic excitation, Journal of Vibration and Control, 25(11) (2019) 107754631983778, DOI: 10.1177/1077546319837789. [Google Scholar]
  10. Abdalellah O. Mohmmed, Hussain H. Al-Kayiem, Mohammad S. Nasif, Rune W.Time, Effect of slug flow frequency on the mechanical stress behavior of pipelines, International Journal of Pressure Vessels and Piping, 172 (2019), https://doi.org/10.1016/j.ijpvp.2019.03.012. [Google Scholar]
  11. Ying Wu, Pengwei Jin and Peng Zhang, Theoretical analysis of pipeline with type I dent under the external force, Advances in Mechanical Engineering, 9(5) (2017) 1–8, DOI: 10.1177/1687814017705599 [Google Scholar]
  12. Anatoliy Kuzmich Egorov and Murat Abishevich Baimukhametov, Free Azimuthal Flexural Fluctuations Elastic Pipe of the Oil Pipeline, World Applied Sciences Journal, 27(12) (2013) 1649–1654, DOI: 10.5829/idosi.wasj.2013.27.12.1197 [Google Scholar]
  13. T.G.Ritto, Christian Soize, A.F.Rochinha, R.Sampaio, Dynamic stability of a pipe` conveying fluid with an uncertain computational model, Journal of Fluid and Structures, 49 (2014) 412–426. ff10.1016/j.jfluidstructs.2014.05.003ff. ffhal–00987873f [Google Scholar]
  14. Janusz Zachwieja, Stress Analysis of Vibrating Pipelines, AIP Conference Proceedings 1822 (2017) 020017, https://doi.org/10.1063/1.4977691 [CrossRef] [Google Scholar]
  15. Yan-Lei Zhang, Hui-Rong Feng, Li-Qun Chen, Supercritical Nonlinear Vibration of a Fluid-Conveying Pipe Subjected to a Strong External Excitation, Shock and Vibration 2016 (2016) ID 3907498, http://dx.doi.org/10.1155/2016/3907498. [Google Scholar]
  16. W.D. Xie, X.F. Gao, & W.H. Xu, Stability and nonlinear vibrations of a flexible pipe parametrically excited by an internal varying flow density, Acta Mech. Sin. (2019) doi:10.1007/s10409-019-00910-w. [Google Scholar]
  17. Qian Li, Wei Liu, Zijun Zhang and Zhufeng Yue, Parametric Resonance of Pipes with Soft and Hard Segments Conveying Pulsating Fluids, International Journal of Structural Stability and Dynamics 18(10) (2018) 1850119, https://doi.org/10.1142/S0219455418501195. [Google Scholar]
  18. Yu-JiaHu, Weidong Zhu, Vibration analysis of a fluid-conveying curved pipe with an arbitrary undeformed configuration, Applied Mathematical Modelling, 64 (2018) 624–642, https://doi.org/10.1016/j.apm.2018.06.046. [Google Scholar]
  19. Ye Tang,Yaxin Zhen, Bo Fang. Nonlinear vibration analysis of a fractional dynamic model for the viscoelastic pipe conveying fluid. Applied Mathematical Modelling. Volume 56, April 2018, Pages 123–136. https://doi.org/10.1016/j.apm.2017.11.022 [Google Scholar]
  20. Wasiu A. Oke, Yehia A. Khulief, Effect of internal surface damage on vibration behavior of a composite pipe conveying fluid, Composite Structures 194 (15) (2018) 104–118, https://doi.org/10.1016/j.compstruct.2018.03.098. [Google Scholar]
  21. Yuchuan Bai, Wude Xie, Xifeng Gao, Wanhai Xu. Dynamic analysis of a cantilevered pipe conveying fluid with density variation, Journal of Fluids and Structures, 81 (2018) 638–655, https://doi.org/10.1016/j.jfluidstructs.2018.06.005. [Google Scholar]
  22. Reza Bahaadini, Ali Reza Saidi, Stability analysis of thin-walled spinning reinforced pipes conveying fluid in thermal environment, European Journal of Mechanics – A/Solids, 72 (2018) 298–309, https://doi.org/10.1016/j.euromechsol.2018.05.015. [Google Scholar]
  23. T.-P.Chang, Nonlinear vibration of single-walled carbon nanotubes with nonlinear damping and random material properties under magnetic field, Composites Part B: Engineering, 114(1) (2017) 69–79, https://doi.org/10.1016/j.compositesb.2017.01.064. [Google Scholar]
  24. Reza Bahaadini, Mohammad Hosseini, Behnam Jamali, Flutter and divergence instability of supported piezoelectric nanotubes conveying fluid, Physica B: Physics of Condensed Matter 529 (2018) 57–65, https://doi.org/10.1016/j.physb.2017.09.130. [Google Scholar]
  25. Xiao-Ying Zhao, Ye-Wei Zhang, Hu Ding, Li-Qun Chen, Vibration Suppression of a Nonlinear Fluid-Conveying Pipe Under Harmonic Foundation Displacement Excitation Via Nonlinear Energy Sink, International Journal of Applied Mechanics, 10(09) (2018) 1850096, doi:10.1142/S1758825118500965. [Google Scholar]
  26. F.B.Badalov, B.A.Khudayarov, A.Abdukarimov, Effect of the hereditary kernel on the solution of linear and nonlinear dynamic problems of hereditary deformable systems, Journal of Machinery Manufacture and Reliability 36 (2007) 328–335, https://doi.org/10.3103/S1052618807040048. [Google Scholar]
  27. F.B.Badalov, Methods for Solving Integral and Integro-differential Equations of the Hereditary Theory of Viscoelasticity, Mekhnat (1987) Tashkent. [Google Scholar]
  28. F.B.Badalov, Kh.Eshmatov, M.Yusupov, Some Methods of Solution of the Systems of Integro-differential Equations in Problems of Viscoelasticity, Applied Mathematics and Mechanics 51(5) (1987) 867–871. [Google Scholar]
  29. B.A.Khudayarov, F.Zh.Turaev, Mathematical Simulation of Nonlinear Oscillations of Viscoelastic Pipelines Conveying Fluid, Applied Mathematical Modelling 66 (2019) 662–679, https://doi.org/10.1016/j.apm.2018.10.008. [Google Scholar]
  30. B.A.Khudayarov, Kh.M.Komilova, Vibration and dynamic stability of composite pipelines conveying a two-phase fluid flows, Engineering Failure Analysis 104 (2019) 500–512, https://doi.org/10.1016/j.engfailanal.2019.06.025. [Google Scholar]
  31. B.A.Khudayarov, Kh.M.Komilova and F.Zh.Turaev, Numerical Simulation of Vibration of Composite Pipelines Conveying Pulsating Fluid, International Journal of Applied Mechanics 11(9), 2019, 1950090, https://doi.org/10.1142/S175882511950090X. [Google Scholar]
  32. B.A.Khudayarov, F.Zh.Turaev, Numerical simulation of nonlinear oscillations of a viscoelastic pipeline with fluid, Vestnik of Tomsk State University. Mathematics and mechanics 5(43) (2016) 90–98, DOI:10.17223/19988621/43/10. [Google Scholar]
  33. B.A.Khudayarov, Kh.M.Komilova, F.Zh.Turaev, The effect of two-parameter of Pasternak foundations on the oscillations of composite pipelines conveying gas-containing fluids, International Jurnal of Pressure Vessels and Piping, 176 (2019) 103946, DOI: 10.1016/j.ijpvp.2019.103946. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.