Open Access
Issue
E3S Web Conf.
Volume 367, 2023
The 2022 International Symposium of the Society of Core Analysts (SCA 2022)
Article Number 01005
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202336701005
Published online 31 January 2023
  1. J. E. McClure, R.T. Armstrong, M. A. Berril, S. Schlüter, S. Berg, “A geometric state function for two-fluid flow in porous media, ” Phys Rev Fluids 3, 084306 (2018) [CrossRef] [Google Scholar]
  2. W.G. Anderson, “Wettability literature surveypart4: Effects of wettability on capillary pressure, ” J Pet Technol 39, 1283 (1987) [CrossRef] [Google Scholar]
  3. W.G. Anderson, “Wettability literature survey-part 5: The effects of wettability on relative permeability, ” J Pet Technol 39, 1453 (1987) [CrossRef] [Google Scholar]
  4. Q. Lin, B. Bijeljic, S. Berg, R. Pini, M.J. Blunt, S. Krevor, “Minimal surfaces in porous media: Porescale imaging of multiphase flow in an altered wettability Bentheimer sandstone”, Phys. Rev. E, 99, 6 (2019). [Google Scholar]
  5. M. Rücker, W.-B. Bartels, G. Garfi, M. Shams, T. Bultreys, M. Boone, S. Pieterse, G.C. Maitland, S. Krevor, V. Cnudde, H. Mahani, S. Berg, A. Georgiadis, P.F. Luckham, “Relationship between wetting and capillary pressure in a crude oil/brine/ rock system: From nano-scale to core-scale”, J Colloid Interface Sci., 562, 159 (2020) [CrossRef] [Google Scholar]
  6. M. Rücker, W.-B. Bartels, K. Singh, N. Brussee, A. Coorn, H. A. van der Linde, A. Bonnin, H. Ott, S. M. Hassanizadeh, M. J. Blunt, H. Mahani, A. Georgiadis, S. Berg, “The effect of mixed wettability on pore-scale flow regimes based on a flooding experiment in Ketton limestone, ” Geophys. Res. Lett. 46, 3225-3234 (2019). [CrossRef] [Google Scholar]
  7. N.R. Morrow, “Wettability and its effect on oil recovery, ” J Pet Technol 42, 1476 (1990) [CrossRef] [Google Scholar]
  8. G. Garfi, C.M. John, M. Rücker, Q. Lin, C. Spurin, S. Berg, S. Krevor, “Determination of the spatial distribution of wetting in the pore networks of rocks”, J Colloid Interface Sci., 613, 786 (2022). [CrossRef] [Google Scholar]
  9. G. Garfi, C.M. John, Q. Lin, S. Berg, S. Krevor, “Fluid surface coverage showing the controls of rock mineralogy on the wetting state, ” Geophys. Res. Lett. 47 (8) (2020). [CrossRef] [Google Scholar]
  10. S. Foroughi, B. Bijeljic, Q. Lin, A.Q. Raeini, M.J. Blunt, “Pore-by-pore modeling, analysis, and prediction of two-phase flow in mixed-wet rocks, ” Phys. Rev. E 102, 02330 (2020). [CrossRef] [Google Scholar]
  11. Q. Lin, B. Bijeljic, S. Berg, R. Pini, M.J. Blunt, S. Krevor, “Minimal surfaces in porous media: Porescale imaging of multiphase flow in an altered wettability Bentheimer sandstone”, Phys. Rev. E, 99, 6 (2019). [Google Scholar]
  12. A. Scanziani, K. Singh, M.J. Blunt, A. Guadagnini, “Automatic method for estimation of in situ effective contact angle from X-ray micro tomography images of two-phase flow in porous media”, J. Colloid Interface Sci. 496, 51 (2017). [CrossRef] [Google Scholar]
  13. W.-B. Bartels, M. Rücker, M. Boone, T. Bultreys, H. Mahani, S. Berg, S.M. Hassanizadeh, V. Cnudde, “Imaging spontaneous imbibition in full Darcy-scale samples at pore-scale resolution by fast X-ray tomography”, Water Resour. Res., 55 7072 (2019). [CrossRef] [Google Scholar]
  14. A.M. Alhammadi, A. AlRatrout, K. Singh, B. Bijeljic, M.J. Blunt, “In situ characterization of mixed-wettability in a reservoir rock at subsurface conditions”, Sci. Rep., 7, 10753 (2017). [CrossRef] [Google Scholar]
  15. M. Andrew, B. Bijeljic, M.J. Blunt, “Pore-scale contact angle measurements at reservoir conditions using X-ray microtomography”, Adv. Water Resour., 68, 24 (2014). [CrossRef] [Google Scholar]
  16. M. Prodanović, W.B. Lindquist, R.S. Seright, “Residual fluid blobs and contact angle measurements from X-ray images of fluid displacement, ” XVI International Conference on Computational Methods in Water Resources, (2006). [Google Scholar]
  17. C.J. Radke, A.R. Kovscek, H. Wong, “A pore-level scenario for the development of mixed wettability in oil reservoirs, ” SPE 24880, SPE Ann. Tech Conf. and Exhib., Washington, D.C. USA, Oct, 1992. [Google Scholar]
  18. B.V. Derjaguin, E.V. Obukhov, “Anomalous properties of thin polymolecular films V., ” Acta Physicochim. URSS, 10(1), 25-44 (1939a). [Google Scholar]
  19. B.V. Derjaguin, E.V. Obukhov, “Anomalous properties of thin polymolecular films V., ” Acta Physicochim. URSS, 10(2), 153-174 (1939b). [Google Scholar]
  20. G.R. Jerauld, J. Fredrich, N. Lane, Q. Sheng, B. Crouse, D.M. Freed, A. Fager, and R. Xu, “Validation of a workflow for digitally measuring relative permeability, ” SPE 188688, SPE Abu Dhabi Int. Pet. Exhib. & Conf., Abu Dhabi, U.A.E., Nov., 2017. [Google Scholar]
  21. M. A. Al Ibrahim, N. F. Hurley, W. Zhao, D. Acero-Allard, “An automated petrographic image analysis system: capillary pressure curves using confocal microscopy, ” SPE 159180-MS, SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA, Oct, 2012. [Google Scholar]
  22. S. Chen and G. Doolen, “Lattice Boltzmann method for fluid flows, ” Annu. Rev. Fluid Mech., 30, 329 (1998). [CrossRef] [Google Scholar]
  23. S. Chen, H. Chen, D. Martinez, and W. Mattheus, “Lattice Boltzmann model for simulation of magnetohydrodynamics, ” Phys. Rev. Lett., 67, 3776 (1991). [CrossRef] [PubMed] [Google Scholar]
  24. H. Chen, S. Chen, W. Matthaeus, “Recovery of the Navier Stokes equations using a lattice-gas Boltzmann method, ” Phys. Rev. A, 45, R5339 (1992). [CrossRef] [PubMed] [Google Scholar]
  25. Y. Qian, D. d’Humieres, P. Lallemand, “Lattice BGK models for Navier-Stokes equation, ” Europhys. Lett., 17, 479 (1992) [CrossRef] [Google Scholar]
  26. H. Chen, “Volumetric formulation of the lattice Boltzmann method for fluid dynamics: Basic concept, ” Phys. Rev. E, 58, 3955 (1998) [CrossRef] [Google Scholar]
  27. H. Otomo, H. Fan, R. Hazlett, Y. Li, I. Staroselsky, R. Zhang, R., and H. Chen, H., “Simulation of residual oil displacement in a sinusoidal channel with the Lattice Boltzmann method, ” Comptes Rendus Mécanique, 343, 559 (2015). [CrossRef] [Google Scholar]
  28. H. Andrä, N. Combaret, J. Dvorkin, E. Glatt, J. Han, M. Kabel, Y. Keehm, F. Krzikalla, M. Lee, C. Madonna, M. Marsh, T. Mukerji, E. H. Saenger, R. Sain, N. Saxena, S. Ricker, A. Wiegmann, X. Zhan, “Digital rock physics benchmarks—part II: Computing effective properties, ” Comp. Geosci., 50, 33 (2013) [CrossRef] [Google Scholar]
  29. J. Wu, J.J. Huang, “Dynamic behaviors of liquid droplets on a gas diffusion layer surface: Hybrid lattice Boltzmann investigation, ” J. App. Phys., 118, 044902 (2015) [CrossRef] [Google Scholar]
  30. M.A. Safi, N.I. Prasianakis, J. Mantzaras, A. Lamibrac, F.N. Buchi, “Experimental and pore-level numerical investigation of water evaporation in gas diffusion layers of polymer electrolyte fuel cells, ” Int J Heat and Mass Trans., 115, 238 (2017). [CrossRef] [Google Scholar]
  31. L. Martin, P. Benedikt, K. Benjamin, W. Julius, D. Timo, S. Volker, L. Arnulf, “Understanding electrolyte filling of Lithium-ion battery electrodes on the pore scale using the Lattice Boltzmann Method, ” Batteries and Supercaps, e202200090, (to be published) [Google Scholar]
  32. D.H. Jeon, “Wettability in electrodes and its impact on the performance of Lithium-ion batteries, ” Energy Storage Materials, 18, 139 (2019) [CrossRef] [Google Scholar]
  33. X. Shan and H. Chen, “Lattice Boltzmann model for simulating flows with multiple phases and components, ” Phys Rev E, 47, 1815 (1993). [CrossRef] [PubMed] [Google Scholar]
  34. H. Otomo, H. Fan, Y. Li, M. Dressler, I. Staroselsky, R. Zhang, and H. Chen, “Studies of accurate multicomponent Lattice Boltzmann models on benchmark cases required for engineering applications, ” Jour. Comp. Sci., 17, 334 (2016). [CrossRef] [Google Scholar]
  35. H. Otomo, B. Crouse, M. Dressler, D.M. Freed, I. Staroselsky, R. Zhang, H. Chen, “Multi-component Lattice Boltzmann models for accurate simulation of flows with wide viscosity variation, ” Computer Fluids, 172, 674 (2018) [CrossRef] [Google Scholar]
  36. H. Chen, C. Teixeira, and K. Molvig, “Realization of fluid boundary conditions via discrete Boltzmann dynamics, ” Int. J. Mod. Phys. C, 9, 1281 (1998). [CrossRef] [Google Scholar]
  37. B. Crouse, D. M. Freed, N. Koliha, G. Balasubramanian, R. Satti, D. Bale, and S. Zuklic, “A Lattice-Boltzmann based method applied to Digital Rock characterization of perforation tunnel damage, ”. SCA 2016-058, Int. Symp. Soc. Core Analysts, Snow Mass, CO, USA., (2016). [Google Scholar]
  38. C. McPhee, J. Reed, I. Zubizarreta, Core Analysis: A best Practice Guide, 64, 449 (2015). [CrossRef] [Google Scholar]
  39. N. Dyn, K. Hormann, S-J. Kim, D. Levin, “Optimizing 3D triangulations using discrete curvature analysis, ” Mathematical methods for curves and surfaces, 1, 135 (2001) [Google Scholar]
  40. The VTK User’s Guide, (11th Edition, Kitware Inc., 2010) [Google Scholar]
  41. W.B. Haines, “Studies in the physical properties of soil : the hysteresis effect in capillary properties and the modes of moisture distribution.” J Agric Sci, 20, 97 (1930) [CrossRef] [Google Scholar]
  42. R. T. Armstrong, N. Evseev, D. Koroteev, S. Berg, “Modeling the velocity field during Haines jumps in porous media, ” Adv Water Resour, 77, 57-68, (2015). [CrossRef] [Google Scholar]
  43. J.G. Roof, “Snap-Off of oil droplets in water-wet pores, ” SPE J., 10, 85 (1970) [Google Scholar]
  44. R. T. Armstrong, S. Berg, O. Dinariev, N. Evseev, D. Klemin, D. Koroteev, S. Safonov, “Modeling of pore-scale two-phase phenomena using density functional hydrodynamics, ” [Google Scholar]
  45. V. Khosravi, S.M. Mahmood, D. Zivar, H. Sharifigaliuk, “Investigating the applicability of molecular dynamics simulation for estimating the wettability of sandstone hydrocarbon formations”, ACS Omega, 5, 22852 (2020). [CrossRef] [PubMed] [Google Scholar]
  46. M.P. Anderson, M.V. Bennetzen, A. Klamt, S.L.S Stipp, “First principles prediction of liquid/liquid interfacial tension, ” J. Chem. Theory Comput., 10, 3401 (2014). [CrossRef] [PubMed] [Google Scholar]
  47. M.P. Anderson, T. Hassenkam, J. Matthiesen, L.V. Nikolajsen, D.V. Okhrimenko, S. Dobberschutz, S.L.S Stipp, “First-principles prediction of surface wetting, ” Langmuir, 36, 12451 (2020). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.