Open Access
Issue
E3S Web Conf.
Volume 367, 2023
The 2022 International Symposium of the Society of Core Analysts (SCA 2022)
Article Number 01010
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/202336701010
Published online 31 January 2023
  1. M.J. Blunt, Multiphase flow in permeable media: a pore-scale perspective, Cambridge University Press, Cambridge, United Kingdom; New York, NY, 2017. [Google Scholar]
  2. A. Mehmani, R. Verma, M. Prodanović, Pore-scale modeling of carbonates, Marine and Petroleum Geology. 114 (2020) 104141. https://doi.org/10.1016/j.marpetgeo.2019.104141. [Google Scholar]
  3. Y.D. Wang, M.J. Blunt, R.T. Armstrong, P. Mostaghimi, Deep learning in pore scale imaging and modeling, EarthScience Reviews. 215 (2021) 103555. https://doi.org/10.1016/j.earscirev.2021.103555. [Google Scholar]
  4. A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, in: F. Pereira, C.J.C. Burges, L. Bottou, K.Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 25, Curran Associates, Inc., 2012: pp. 1097–1105. http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf (accessed August 15, 2019). [Google Scholar]
  5. J.E. Santos, Y. Yin, H. Jo, W. Pan, Q. Kang, H.S. Viswanathan, M. Prodanović, M.J. Pyrcz, N. Lubbers, Computationally Efficient Multiscale Neural Networks Applied to Fluid Flow in Complex 3D Porous Media, Transp Porous Med. (2021). https://doi.org/10.1007/s11242-02101617-y. [Google Scholar]
  6. J.E. Santos, D. Xu, H. Jo, C.J. Landry, M. Prodanović, M.J. Pyrcz, PoreFlow-Net: a 3D convolutional neural network to predict fluid flow through porous media, Advances in Water Resources. (2020) 103539. https://doi.org/10.1016/j.advwatres.2020.103539. [CrossRef] [Google Scholar]
  7. TensorFlow, TensorFlow. (n.d.). https://www.tensorflow.org/ (accessed July 3, 2022). [Google Scholar]
  8. J. Santos, Y. Yin, M. Prodanović, H. Khan, N. Lubbers, 3D Collection of Binary Images, (2021). https://doi.org/10.17612/NXGK-K611. [Google Scholar]
  9. B. Chang, J.E. Santos, R.A. Victor, M. Prodanović, ElRockNet: Assessing the Utility of Machine Learning to Initialize 3D Electric Potential Simulations, in: Society of Core Analysists Conference Proceedings, The Society of Core Analysts (SCA), Austin, Texas, USA, 2022: pp. SCA2022T049. [Google Scholar]
  10. M. Prodanovic, J.E. McClure, DRP Visualization Minicourse, 2020. https://github.com/drmasha/drp_visualization_mini_course. [Google Scholar]
  11. B. Chang, F. Farias, M. Prodanovic, Digital Porous Media tools (dpm_tools), n.d. https://github.com/BCChang/dpm_tools. [Google Scholar]
  12. Y. Niu, Y. Da Wang, P. Mostaghimi, J.E. McClure, J. Yin, R.T. Armstrong, Geometrical-Based Generative Adversarial Network to Enhance Digital Rock Image Quality, Phys. Rev. Applied. 15 (2021) 064033. https://doi.org/10.1103/PhysRevApplied.15.064033. [Google Scholar]
  13. J.E. McClure, J. Yin, R.T. Armstrong, K.C. Maheshwari, S. Wilkinson, L. Vlcek, Y. Da Wang, M.A. Berrill, M. Rivers, Toward Real-Time Analysis of Synchrotron MicroTomography Data: Accelerating Experimental Workflows with AI and HPC, in: J. Nichols, B. Verastegui, A. ‘Barney’ Maccabe, O. Hernandez, S. Parete-Koon, T. Ahearn (Eds.), Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI, Springer International Publishing, Cham, 2020: pp. 226–239. https://doi.org/10.1007/978-3-030-63393-6_15. [CrossRef] [Google Scholar]
  14. M. Prodanovic, M. Esteva, M. Hanlon, G. Nanda, P. Agarwal, Digital Rocks Portal, (2015). https://doi.org/10.17612/P7CC7K. [Google Scholar]
  15. Mendeley Data, (n.d.). https://data.mendeley.com/ (accessed September 1, 2019). [Google Scholar]
  16. Dryad, (n.d.). http://datadryad.org/ (accessed July 3, 2022). [Google Scholar]
  17. Energy Data Exchange (EDX), (n.d.). https://edx.netl.doe.gov/ (accessed July 3, 2022). [Google Scholar]
  18. S. Sweat, A. Ranganath, M. Esteva, M. Prodanović, User Guided Design: Building Confidence in Engineering Data Publication, in: University of Texas at Austin, Denver, CO, 2016. https://doi.org/10.15781/T27940X4W. [Google Scholar]
  19. S. Fuchs, D. Crandall, M. Gill, J. Moore, B. Kutchko, Foamed Cement API RP 10B-4, (2018). https://doi.org/10.17612/p7gd4q. [Google Scholar]
  20. M. Souzy, H. Lhuissier, Y. Méheust, T. Le Borgne, B. Metzger, Experimental 3D Velocity Field in Random Sphere Packing, (2020). https://doi.org/10.17612/HDP8-0149. [Google Scholar]
  21. C. Peters, S. Hajireziae, J. Kim, D. Crandall, Mineralized fracture in a mudrock shale, (2021). https://doi.org/10.17612/P4WH-W011. [Google Scholar]
  22. H. Khan, M. Prodanovic, D. Dicarlo, Particulate straining in carbonate proxy, Digital Rocks Portal, 2018. https://doi.org/10.17612/P7D96T. [Google Scholar]
  23. DataCite Fabrica, DataCite Fabrica. (n.d.). https://doi.datacite.org/ (accessed May 13, 2022). [Google Scholar]
  24. TACC Visualization Portal, (n.d.). https://vis.tacc.utexas.edu/. [Google Scholar]
  25. Digital Rocks Portal About section, (n.d.). https://www.digitalrocksportal.org/about/. [Google Scholar]
  26. M.D. Wilkinson, M. Dumontier, Ij.J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L.B. da Silva Santos, P.E. Bourne, J. Bouwman, A.J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds, C.T. Evelo, R. Finkers, A. Gonzalez-Beltran, A.J.G. Gray, P. Groth, C. Goble, J.S. Grethe, J. Heringa, P.A.C. ’t Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, S.J. Lusher, M.E. Martone, A. Mons, A.L. Packer, B. Persson, P. Rocca-Serra, M. Roos, R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G. Strawn, M.A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop, A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, B. Mons, The FAIR Guiding Principles for scientific data management and stewardship, Scientific Data. 3 (2016) 160018. https://doi.org/10.1038/sdata.2016.18. [Google Scholar]
  27. ORCID, (n.d.). https://orcid.org/ (accessed May 14, 2022). [Google Scholar]
  28. Digital Rocks Portal: Visualization YouTube, (n.d.). https://www.youtube.com/playlist?list=PL7QcRCNp33XA7BBvpNbwsDZjLB-mezkUu (accessed May 16, 2022). [Google Scholar]
  29. ImageNet, (n.d.). https://image-net.org/index (accessed October 20, 2021). [Google Scholar]
  30. Quantum-Machine.org: Home, (n.d.). http://quantum-machine.org/ (accessed May 16, 2022). [Google Scholar]
  31. J.E. Santos, M.J. Pyrcz, M. Prodanović, 3D Dataset of binary images: A collection of synthetically created digital rock images of complex media, Data in Brief. 40 (2022) 107797. https://doi.org/10.1016/j.dib.2022.107797. [CrossRef] [PubMed] [Google Scholar]
  32. J. Santos, Chang, Bernard, Gigliotti, Alex, Kang, Qinjun, Lubbers, Nicholas, Viswanathan, Hari, Prodanovic, Masa, 3D Dataset of Simulations, (2021). https://doi.org/10.17612/93PD-Y471. [Google Scholar]
  33. J.E. Santos, Chang, Bernard, Gigliotti, Alex, Y. Yin, W. Song, Prodanovic, Masa, Q. Kang, Lubbers, Nicholas, H.S. Viswanathan, A Dataset of 3D Structural and Simulated Transport Properties of Complex Porous Media, Nature Scientific Data. Under Review (n.d.). [Google Scholar]
  34. Y.D. Wang, R. Armstrong, P. Mostaghimi, A Diverse Super Resolution Dataset of Digital Rocks (DeepRock-SR): Sandstone, Carbonate, and Coal, (2019). https://doi.org/10.17612/S3M9-E024. [Google Scholar]
  35. Y. Niu, Armstrong, Ryan, Mostaghimi, Peyman, Unpaired super-resolution on micro-CT sandstone by using cycleconsistent generative adversarial network, (2020). https://doi.org/10.17612/VZTT-YX38. [Google Scholar]
  36. N. Alqahtani, P. Mostaghimi, R. Armstrong, A MultiResolution Complex Carbonates Micro-CT Dataset (MRCCM), (2021). https://doi.org/10.17612/3T36-Q704. [Google Scholar]
  37. M. Tawfik, Z. Karpyn, S.X. Huang, scCO2-Brine-Glass Dataset for Comparing Image Denoising Algorithms, (2022). https://doi.org/10.17612/A1QA-2A25. [Google Scholar]
  38. K. Singh, M.J. Blunt, High resolution X-ray microtomography datasets for in-situ effective contact angle analysis in carbonate rocks, (2018). https://doi.org/10.17612/P7D95F. [Google Scholar]
  39. J.E. McClure, Z. Li, M. Berrill, T. Ramstad, The LBPM software package for simulating multiphase flow on digital images of porous rocks, Comput Geosci. 25 (2021) 871–895. https://doi.org/10.1007/s10596-020-10028-9. [CrossRef] [Google Scholar]
  40. Palabos CFD and Complex Physics, (n.d.). http://www.palabos.org/ (accessed January 16, 2014). [Google Scholar]
  41. J.E. Santos, A. Gigliotti, A. Bihani, C. Landry, M.A. Hesse, M.J. Pyrcz, M. Prodanović, MPLBM-UT: Multiphase LBM library for permeable media analysis, SoftwareX. 18 (2022) 101097. https://doi.org/10.1016/j.softx.2022.101097. [CrossRef] [Google Scholar]
  42. R. Verma, M. Prodanovic, Level Set Method based Progressive Quasi-Static (LSMPQS) software 1.0, 2018. https://github.com/rahulverma88/lsmpqs-1.0. [Google Scholar]
  43. National Institute of Standards and Technology, NIST. (n.d.). https://www.nist.gov/ (accessed May 18, 2022). [Google Scholar]
  44. J.T. Gostick, Versatile and efficient pore network extraction method using marker-based watershed segmentation, Phys. Rev. E. 96 (2017) 023307. https://doi.org/10.1103/PhysRevE.96.023307. [CrossRef] [Google Scholar]
  45. OpenPNM | Home | An Open Source Pore Network Modeling Package, (n.d.). http://openpnm.org/ (accessed November 2, 2015). [Google Scholar]
  46. J. Gostick, M. Aghighi, J. Hinebaugh, T. Tranter, M.A. Hoeh, H. Day, B. Spellacy, M.H. Sharqawy, A. Bazylak, A. Burns, W. Lehnert, A. Putz, OpenPNM: A Pore Network Modeling Package, Computing in Science & Engineering. 18 (2016) 60–74. https://doi.org/10.1109/MCSE.2016.49. [CrossRef] [Google Scholar]
  47. Digital Rocks Portal User Agreement Documentation, (n.d.). https://www.digitalrocksportal.org/user-agreement/. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.