Open Access
Issue
E3S Web Conf.
Volume 368, 2023
4th African Regional Conference on Geosynthetics (GeoAfrica 2023)
Article Number 01005
Number of page(s) 15
Section KEYNOTE PAPERS
DOI https://doi.org/10.1051/e3sconf/202336801005
Published online 17 February 2023
  1. ITA WG 6, Study of methods for repair of tunnel linings. International Tunnelling Association (2001) [Google Scholar]
  2. CETU, Guide de l’inspection du génie civile des tunnels routiers – Livre 1: du désordre á l’analyse, de l’analyse á la cotation. (2015). [Google Scholar]
  3. F. Sandrone, V. Labiouse, Identification and analysis of Swiss National Road tunnels pathologies. Tunnelling and underground space technology, 26 (2), 374–390 (2011). [CrossRef] [Google Scholar]
  4. A. Luciani, D. Peila, Tunnel waterproofing: available technologies and evaluation through risk analysis, International Journal of Civil Engineering, 17 (1), pp. 45–59,(2019). [CrossRef] [Google Scholar]
  5. Ø. Dammyr, B. Nilsen, K. Thuro, J. Grøndal, Possible concepts for waterproofing of norwegian TBM railway tunnels. Rock Mechanics and Rock Engineering, 47(3), pp. 985–1002 (2014). [CrossRef] [Google Scholar]
  6. D. Cazzuffi, A. Scuero, G. Vaschetti, Hydraulic and transport tunnels, and shafts, Chapter 18, ICE andbook of Geosynthetic Engineering: Geosynthetics and their applications (2022). [Google Scholar]
  7. J. L. Mahuet, Recomandations sur l’étanchéité et le drainage des ouvrages souterrains. Tunnels et ouvrages souterrain, 159, 41–59 (2005). [Google Scholar]
  8. J.L. Mahuet, Racommandations relatives à l’utilisation et la mise en oeuvre d’un compartimentage associé à un dispositif d’étanchéité par géomembrane synthétique. Tunnels et ouvrages souterrain, 2, 11–17 (2005). [Google Scholar]
  9. Ministère de l’Equipement. Fascicule 67 – III du Cachier des Clauses Techniques Générales (CCTG) – Etanchéité des ouvrages souterrains. Ministère de l’Equipement, des Transports at du Logement – Secrétariat d’Etat au Logement – Secrétariat d’Etat aux Transports, (2014). [Google Scholar]
  10. E. Dal Negro, M. Leotta, E. Pavese, Advanced waterproofing at Farringdon Station. Tunnelling Journal, 30–35 (2016). [Google Scholar]
  11. C. Yoo, B. Kim, Geosynthetics in Underground Construction, in: Proceedings of EuroGeo 6, 25–28 September (2016). [Google Scholar]
  12. R. M. Koerner, Design with geosynthetics. Xlibris Corporation (2012). [Google Scholar]
  13. Y.-S. Jang, B. Kim, J.-W. Lee, Evaluation of discharge capacity of geosynthetic drains for potential use in tunnels, Geotextiles and Geomembranes, 43(3), 228–239 (2015). [CrossRef] [Google Scholar]
  14. ÖBV, Guideline: Tunnel waterproofing. Österreichische Bautechnik Vereinigung (2015). [Google Scholar]
  15. J. L. Mahuet, Prolongement de la ligne B de part-dieu à jean macé du metro de Lyon. Tunnels et ouvrages souterrains, (62), 59–69 (1984). [Google Scholar]
  16. J. L. Mahuet, Bilan et évolution de la mise en oeuvre des GSB dans les ouvrages souterrains, in Proceedings of 8 Rencontres Géosynthétiques (2011). [Google Scholar]
  17. SIA 272, Abdicthungen und Entwässerungen von Bauten unter Terrain und im Untertagbau. Schweizerischer Ingenieur- und Architektenverein (2009). [Google Scholar]
  18. DB, Richtlinie 853.4101 – Eisenbahntunnel planen, bauen und instand halten. Deutsche Bahn Netz AG (2011). [Google Scholar]
  19. N.-E. Sabiri, A. Caylet, A. Montillet, L., Le Coq, Y. Durkheim, Performance of nonwoven geotextiles on oil drainage and filtration. European Journal of Environmental and Civil Engineering, 1–19 (2017). [Google Scholar]
  20. G. Veylon, G. Stoltz, P. Mériaux, Y.-H. Faure, N. Touze-Foltz, Performance of geotextile filters after 18 years’ service in drainage trenches. Geotextiles and Geomembranes, 44 (4), 515–533 (2016). [Google Scholar]
  21. Y. Halse, R. Koerner, A. E. Lord, Effect of high levels of alkalinity on geotextiles. Part 1: Ca(OH)2 solutions. Geotextiles and Geomembranes, 5 (4), 261–282 (1987). [CrossRef] [Google Scholar]
  22. D. Cazzuffi, M. Cunegatti, P. Recalcati, Drainage geocomposites and PVC geomembranes for the lining of a highway tunnel in Greece, Geosynthetics magazine (2022). [Google Scholar]
  23. Y. Hsuan, H. Schroeder, K. Rowe, W. Müller, J. Greenwood, D. Cazzuffi, R. Koerner, Long-term performance and lifetime prediction of geosynthetics, in Proceedings of the 4th European Conference on Geosynthetics, Edinburgh, September. Keynote paper (2008). [Google Scholar]
  24. S. Allen, Geotextile durability, in Geotextiles, 177–215 (2016). [Google Scholar]
  25. J. H. Greenwood, H. F. Schroeder, W. Voskamp, Durability of geosynthetics. CRC Press, Taylor & Francis Group (2015). [Google Scholar]
  26. ISO/TS 13434, Geosynthetics – Guidelines for the assessment of durability. International Organization for Standardization (2008). [Google Scholar]
  27. G. Booth, A. Cooper, J. Robb, Bacterial degradation of plasticized PVC. Journal of Applied Bacteriology, 31 (3), 305–310 (1968). [CrossRef] [Google Scholar]
  28. H. Sabev, P. Handley, G. Robson, Fungal colonization of soil-buried plasticized polyvinyl chloride (pPVC) and the impact of incorporated biocides. Microbiology, 152 (6), 1731–1739 (2006). [CrossRef] [PubMed] [Google Scholar]
  29. J. P. Giroud, L. Tisinger, Relationship between PVC geomembrane density and plasticizer content. Geosynthetics International 2 (3), 567–586 (1995). [CrossRef] [Google Scholar]
  30. M. Usman, R. Galler, Ageing and Degradation of PVC Geomembrane Liners in Tunnels, in Proceedings of the International conference on Chemical, Civil and Environmental Engineering, Singapore, November (2014). [Google Scholar]
  31. D. Maehner, C. Peter, B. Sauerlaender, Langzeitverhalten von Kunststoffdichtungsbahnen. Tunnel, 37 (1) (2018). [Google Scholar]
  32. A. Luciani, C. Todaro, D. Martinelli, D. Peila, Long-term durability assessment of PVCP waterproofing geomembranes through laboratory tests. Tunnelling and Underground Space Technology, 103 (2020). [Google Scholar]
  33. P. H. Flüeler, M. Farshad, C. Löwe, H. Kramer, H. Böhni, New Evaluation Procedure of the Waterproofing Systems for the Swiss Alpine Base Tunnels, in: (Re) Claiming the Underground Space. Routledge, p. 441–447 (2003). [Google Scholar]
  34. EN 13256, Geotextiles and geotextile-related products. Characteristics required for use in the construction of tunnels and underground structures, (2016). [Google Scholar]
  35. EN 13252, Geotextiles and geotextile-related products. Characteristics required for use in drainage systems, (2016). [Google Scholar]
  36. EN 13491, Geosynthetic barriers. Characteristics required for use as a fluid barrier in the construction of tunnels and associated underground structures, (2018). [Google Scholar]
  37. EN 1997–1, Eurocode 7: Geotechnical design – Part 1: General rules, (2004). [Google Scholar]
  38. A. Athanasopoulou, W. Bogusz, D. Boldini, M. Brandtner, R. Brierley, S. Dimova, G. Franzen, H. Ganz, U. Grunicke, N. Malakatas, A. Pecker, K. Roessler, A. Sciotti, A. van Seters, M.L. Sousa, Prospects for designing tunnels and other underground structures in the context of the Eurocodes, A. Athanasopoulou, S. Dimova, G. Franzen, A. van Seters (Editors), Publications Office of the European Union, Luxembourg, doi:10.2760/307164, JRC130784 (2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.