Open Access
Issue
E3S Web Conf.
Volume 371, 2023
International Scientific Conference “Fundamental and Applied Scientific Research in the Development of Agriculture in the Far East” (AFE-2022)
Article Number 04005
Number of page(s) 13
Section Transportation, Sustainability and Decarbonization
DOI https://doi.org/10.1051/e3sconf/202337104005
Published online 28 February 2023
  1. L.N. Rabinskiy, S.A. Sitnikov. Development of technologies for obtaining composite material based on silicone binder for its further use in space electric rocket engines, Periodico Tche Quimica, 2018, 15 (Special Issue 1), p. 390–395. [Google Scholar]
  2. V.A. Pogodin, L.N. Rabinskii, S.A. Sitnikov. 3D Printing of Components for the Gas-Discharge Chamber of Electric Rocket Engines, Russian Engineering Research. 2019. Vol. 39, No. 9. p. 797–799. [Google Scholar]
  3. Formalev, V.F., Kolesnik, S.A. On Thermal Solitons during Wave Heat Transfer in Restricted Areas // High Temperature, 2019, 57(4), p. 498–502. [Google Scholar]
  4. Radaev, S. Mathematical modeling of heat and mass transfer in heat pipes in a one-dimensional formulation when cooling active phased antenna arrays//International Journal of Mechanics, 2021, 15, p. 196–203. [Google Scholar]
  5. Formalev, V.F., Kolesnik, S.A., Kuznetsova, E.L. Mathematical modeling of a new method of thermal protection based on the injection of special coolants // Periodico Tche Quimica. 2019.16(32), p. 598–607. [Google Scholar]
  6. Formalev, V.F., Kartashov, É.M., Kolesnik, S.A. Simulation of Nonequilibrium Heat Transfer in an Anisotropic Semispace Under the Action of a Point Heat Source// Journal of Engineering Physics and Thermophysics. 2019. 92(6), p. 1537–1547. [Google Scholar]
  7. Formalev, V.F., Kolesnik, S.A., Kuznetsova, E.L. Approximate analytical solution of the problem of conjugate heat transfer between the boundary layer and the anisotropic strip // Periodico Tche Quimica. 2019. 16 (32). p. 572–582. [Google Scholar]
  8. I.S. Kurchatov, N.A. Bulychev, S.A. Kolesnik. Obtaining Spectral Characteristics of Semiconductors of AIIBVI Type Alloyed with Iron Ions Using Direct Matrix Analysis, International Journal of Recent Technology and Engineering, 2019, Vol. 8, I. 3, p. 8328–8330. [Google Scholar]
  9. Kurchatov, I., Bulychev, N., Kolesnik, S., Muravev, E. Application of the direct matrix analysis method for calculating the parameters of the luminescence spectra of the iron ion in zinc sulfide crystals // AIP Conference Proceedings, 2019, 2181, 020015. [Google Scholar]
  10. Kolesnik, S.A., Bulychev, N.A., Rabinskiy, L.N., Kazaryan, M.A. Mathematical modeling and experimental studies of thermal protection of composite materials under high-intensity effects of laser radiation //Proceedings of SPIE – The International Society for Optical Engineering. 2019. 11322,113221R. [Google Scholar]
  11. Formalev, V.F., Bulychev, N.A., Kolesnik, S.A., Kazaryan, M.A. Thermal state of the package of cooled gas-dynamic microlasers //Proceedings of SPIE – The International Society for Optical Engineering. 2019. 11322,113221B. [Google Scholar]
  12. Kolesnik, S.A., Bulychev, N.A. Numerical analytic method for solving the inverse coefficient problem of heat conduction in anisotropic half-space// Journal of Physics: Conference Series, 2020, 1474(1), 012024. [CrossRef] [Google Scholar]
  13. Radaev, S. Numerical and analytical modeling of permanent deformations in panels made of nanomodified carbon fiber reinforced plastic with asymmetric packing// International Journal of Mechanics, 2021, 15, p. 172–180. [Google Scholar]
  14. Radaev, S. Design calculations of the limiting characteristics of heat pipes for cooling active phased antenna arrays // WSEAS Transactions on Applied and Theoretical Mechanics. 2021. 16, p. 142–149. [Google Scholar]
  15. Sun, Y., Kolesnik, S.A., Kuznetsova, E.L. Mathematical modeling of coupled heat transfer on cooled gas turbine blades // INCAS Bulletin, 2020, 12 (Special Issue), p. 193–200. [Google Scholar]
  16. Formalev, V.F., Kartashov, É.M., Kolesnik, S.A. On the Dynamics of Motion and Reflection of Temperature Solitons in Wave Heat Transfer in Limited Regions // Journal of Engineering Physics and Thermophysics, 2020, 93(1), p. 10–15. [Google Scholar]
  17. Formalev, V.F., Bulychev, N.A., Kuznetsova, E.L., Kolesnik, S.A. The Thermal State of a Packet of Cooled Microrocket Gas-Dynamic Lasers // Technical Physics Letters, 2020, 46(3), p. 245–248. [Google Scholar]
  18. O.A. Butusova. Surface Modification of Titanium Dioxide Microparticles Under Ultrasonic Treatment, International Journal of Pharmaceutical Research, 2020, Vol. 12, I. 4, pp.2292–2296. [Google Scholar]
  19. A.N. Tarasova. Vibration-based Method for Mechanochemical Coating Metallic Surfaces, International Journal of Pharmaceutical Research, 2020, Vol. 12, Supplementary Issue 2, pp.1160–1168. [Google Scholar]
  20. M.O. Kaptakov. Effect of Ultrasonic Treatment on Stability of TiO2 Aqueous Dispersions in Presence of Water-Soluble Polymers, International Journal of Pharmaceutical Research, 2020, Vol. 12, Supplementary Issue 2, pp.1821–1824. [Google Scholar]
  21. O.A. Butusova. Stabilization of Carbon Microparticles by High-Molecular Surfactants, International Journal of Pharmaceutical Research, 2020, Vol. 12, Supplementary Issue 2, pp.1147–1151. [Google Scholar]
  22. M.O. Kaptakov. Catalytic Desulfuration of Oil Products under Ultrasonic Treatment, International Journal of Pharmaceutical Research, 2020, Vol. 12, Supplementary Issue 2, pp.1838–1843. [Google Scholar]
  23. A.N. Tarasova. Effect of Reagent Concentrations on Equilibria in Water-Soluble Complexes, International Journal of Pharmaceutical Research, 2020, Vol. 12, Supplementary Issue 2, pp.1169–1172. [Google Scholar]
  24. Yu.V. Ioni. Nanoparticles of noble metals on the surface of graphene flakes, Periodico Tche Quimica, 2020, Vol. 17, No. 36, pp.1199–1211. [Google Scholar]
  25. A.V. Perchenok, E.V. Suvorova, A.A. Farmakovskaya, V. Kohlert. Stabilization of aqueous dispersions of inorganic microparticles under mechanical activation, WSEAS Transactions on Applied and Theoretical Mechanics, 2021, Vol. 16, pp.127–133. [CrossRef] [Google Scholar]
  26. N.A. Bulychev. Preparation of Stable Suspensions of ZnO Nanoparticles with Ultrasonically Assisted Low-Temperature Plasma, Nanoscience and Technology: An International Journal, 2021, Vol. 12, No. 3, pp.91–97. [Google Scholar]
  27. N.A. Bulychev. Study of Interaction of Surface-Active Polymers with ZnO Nanoparticles Synthesized in Ultrasonically Assisted Plasma Discharge, Nanoscience and Technology: An International Journal, 2022, Vol. 13, I. 1, pp.55–65. [CrossRef] [Google Scholar]
  28. A.N. Tarasova. Effect of Vibration on Physical Properties of Polymeric Latexes, International Journal of Pharmaceutical Research, 2020, Vol. 12, Supplementary Issue 2, pp.1173–1180. [Google Scholar]
  29. M.O. Kaptakov. Enhancement of Quality of Oil Products under Ultrasonic Treatment, International Journal of Pharmaceutical Research, 2020, Vol. 12, Supplementary Issue 2, pp.1851–1855. [Google Scholar]
  30. Yu.V. Ioni. Synthesis of Metal Oxide Nanoparticles and Formation of Nanostructured Layers on Surfaces under Ultrasonic Vibrations, International Journal of Pharmaceutical Research, 2020, Vol. 12, Issue 4, pp.3432–3435. [Google Scholar]
  31. N.A. Bulychev, A.V. Ivanov. Effect of vibration on structure and properties of polymeric membranes, International Journal of Nanotechnology, 2019, Vol. 16, Nos. 6/7/8/9/10, pp.334 – 343. [Google Scholar]
  32. N.A. Bulychev, A.V. Ivanov. Nanostructure of Organic-Inorganic Composite Materials Based on Polymer Hydrogels, International Journal of Nanotechnology, 2019, Vol. 16, Nos. 6/7/8/9/10, pp. 344–355. [CrossRef] [Google Scholar]
  33. N.A. Bulychev, A.V. Ivanov. Study of Nanostructure of Polymer Adsorption Layers on the Particles Surface of Titanium Dioxide, International Journal of Nanotechnology, 2019, Vol. 16, Nos. 6/7/8/9/10, pp.356 – 365. [CrossRef] [Google Scholar]
  34. N.A. Bulychev. Obtaining of nanosized materials in Plasma Discharges and Ultrasonic cavitation, High Temperature, 2021, Vol. 59, I. 4, pp.600–633. [Google Scholar]
  35. O.A. Butusova. Vinyl Ether Copolymers as Stabilizers of Carbon Black Suspensions, International Journal of Pharmaceutical Research, 2020, Vol. 12, Supplementary Issue 2, pp.1152–1155. [Google Scholar]
  36. A.V. Perchenok, E.V. Suvorova, A.A. Farmakovskaya, V. Kohlert. Application of vinyl ether copolymers for surface modification of carbon black, International Journal of Circuits, Systems and Signal Processing, 2021, Vol. 15, pp.1414–1420. [Google Scholar]
  37. O.A. Butusova. Adsorption Behaviour of Ethylhydroxyethyl Cellulose on the Surface of Microparticles of Titanium and Ferrous Oxides, International Journal of Pharmaceutical Research, 2020, Vol. 12, Supplementary Issue 2, pp.1156–1159. [Google Scholar]
  38. Yu.V. Ioni. Effect of Ultrasonic Treatment on Properties of Aqueous Dispersions of Inorganic and Organic Particles in Presence of Water-Soluble Polymers, International Journal of Pharmaceutical Research, 2020, Vol. 12, Issue 4, pp.3440–3442. [Google Scholar]
  39. N.A. Bulychev. Acoustoplasma Synthesis of Silver Nanoparticles with Antibacterial Properties, Biophysical Journal, 2022, Vol. 121, I. 3, Suppl. 1, p. 427a. [Google Scholar]
  40. S.A. Kolesnik. Mechanical Properties of Polyethylene/Al2O3 Nanoparticles Composite Material, AIP Conference Proceedings, 2021, Vol. 2402, article number 020026. [CrossRef] [Google Scholar]
  41. Vladimir Goncharenko, Yury Mikhaylov, Natalya Kartushina. Pattern recognition techniques for classifying aeroballistic flying vehicle paths. Neural Computing and Applications, 2022, Vol. 34, I. 5, pp.4033–4045. [CrossRef] [Google Scholar]
  42. S.A. Kolesnik. Investigation of Mechanical Properties of Polymer Composite Material Based on Polyethylene with Fe2O3 Nanoparticles, AIP Conference Proceedings, 2021, Vol. 2402, article number 020037. [Google Scholar]
  43. M.O. Kaptakov, E.A. Pegachkova, A.V. Makarenko. Physical and Mechanical Properties of Composites Polyethylene – CuO Nanoparticles, AIP Conference Proceedings, 2021, Vol. 2402, article number020038. [Google Scholar]
  44. G. A. Kalugina, A. V. Ryapukhin. Impact of the 2020 Pandemic on Russian Aviation, Russian Engineering Research, vol. 41. no. 7, pp.627–630, 2021. [Google Scholar]
  45. M.O. Kaptakov. Synthesis and Characterization of Polymer Composite Materials Based on Polyethylene and CuO Nanoparticles, AIP Conference Proceedings, 2021, Vol. 2402, article number020027. [CrossRef] [Google Scholar]
  46. Y. Burova. Concept of multistage discrete fourier transform without performing multiplications, Journal of Physics: Conference Series, 2021, vol. 1889, no. 2, 022003. [CrossRef] [Google Scholar]
  47. Astapov A.N., Pogodin V.A. Change in the integral pore size in CCCM during low-temperature oxidation // Russian Metallurgy (Metally). – 2021. – Vol. 2021, No. 12. – P. 1529–1533. [Google Scholar]
  48. Lifanov I.P., Astapov A.N., Terentieva V.S. Deposition of heat-resistant coatings based on the ZrSi2-MoSi2-ZrB2 system for protection of non-metallic composite materials in high-speed high-enthalpy gas flows // Journal of Physics: Conference Series. – 2020. – Vol. 1713, No. 1. – P. 012025. [Google Scholar]
  49. Pogodin V.A., Astapov A.N., Rabinskiy L.N. CCCM specific surface estimation in process of low-temperature oxidation // Periodico Tche Quimica. – 2020. – Vol. 17, No. 34. – P. 793–802. [Google Scholar]
  50. Yu.V. Ioni, O.A. Butusova. Preparation of Polymer Composite Material with Fe2O3 Nanoparticles Synthesized with Low-Temperature Plasma under Ultrasonic Action, AIP Conference Proceedings, 2021, Vol. 2402, article number 020035. [Google Scholar]
  51. Yu.V. Ioni, O.A. Butusova. Synthesis of Al2O3 Nanoparticles for Their Subsequent Use as Fillers of Polymer Composite Materials, AIP Conference Proceedings, 2021, Vol. 2402, article number 020036. [Google Scholar]
  52. Lifanov I.P., Yurishcheva A.A., Astapov A.N. High-temperature protective coatings on carbon composites // Russian Engineering Research. – 2019. – Vol. 39, No. 9. – P. 804–808. [Google Scholar]
  53. Astapov A.N., Lifanov I.P., Prokofiev M.V. High-temperature interaction in the ZrSi2-ZrSiO4 system and its mechanism // Russian Metallurgy (Metally). – 2019. – No. 6. – P. 640–646. [Google Scholar]
  54. Dorrance W.H. Viscous hypersonic flow. Theory of Reacting Hypersonic Boundary Layers. Dover Publications, Inc., New York. 2017. 352 p. [Google Scholar]
  55. Formalev V.F., Kolesnik S.A. Mathematical modeling of coupled heat transfer between viscous gas-dynamic flows and anisotropic bodies. (LENAND, Moscow, 2019) p. 320 [in Russian]. [Google Scholar]
  56. Formalev V.F., Kolesnik S.A. Conjugate heat transfer between wall gasdynamic flows and anisotropic bodies // High Temp. 2007. 45. p. 76–84. [Google Scholar]
  57. Formalev V.F., Kolesnik S.A., Garibyan B.A. Analytical solution of the problem of conjugate heat transfer between a gasdynamic boundary layer and anisotropic strip // Herald of the Bauman Moscow State Technical University. Series Natural Sciences. 2020, 5(92), p. 44–59. [Google Scholar]
  58. Formalev V.F., Kolesnik S.A. and Kuznetsova E.L. The effect of longitudinal nonisothermality on conjugate heat transfer between wall gasdynamic flows and blunt anisotropic bodies // High Temp. 2009. 47: 228. [Google Scholar]
  59. Formalev V.F., Kolesnik S.A. and Kuznetsova E.L. Effect of Components of the Thermal Conductivity Tensor of Heat-Protection Material on the Value of Heat Fluxes from the Gasdynamic Boundary Layer // High Temp. 2019. 57. p. 66–71. [Google Scholar]
  60. Thant Zin Hein, Boris A. Garibyan, Sergey N. Vakhneev, Olga V. Tushavina, and Vladimir F. Formalev Analytical study of joint heat transfer between a gas-dynamic boundary layer and an anisotropic strip. INCAS bulletin. 2020. 12, Special Issue. p. 233–243. [Google Scholar]
  61. Garibyan B.A. A criterion for estimating the accuracy of numerical solutions of a nonlinear stationary heat conduction problem based on the variational principle // Inform. and telecom. technologies. 2019. 43. p. 6–16. [in Russian]. [Google Scholar]
  62. Widhopf G.F., Wang J.C.T. A TVD Finite-Volume Technique for Nonequilibrium Chemically Reacting Flows // AIAA Paper. 1988. 88. p. 2711. [Google Scholar]
  63. Scalabrin, L.C. Numerical Simulation of Weakly Ionized Hypersonic Flow over Reentry Capsules. PhD Dissertation. University of Michigan. 2007. [Google Scholar]
  64. Bonnie J. McBride, Dr. Michael J. Zehe, Gordon S. NASA Glenn Coefficients for Calculating Thermodynamic Properties of Individual Species. – National Aeronautics and Space Administration John H. Glenn Research Center at Lewis Field Cleveland, 2002. 291 p. [Google Scholar]
  65. Millat, J., Dymond, J. H. and Nieto de Castro, C. A. Transport Properties of Fluids: Their Correlation, Prediction and Estimation, Cambridge University Press. 1996. [CrossRef] [Google Scholar]
  66. Blottner F. G., Johnson M., Ellis M. Chemically reacting viscous flow program for multi-component gas mixtures // SC-RR-70–754, Sandia Laboratories, Albuquerque, New Mexico, 1971. [Google Scholar]
  67. Landau L.D., Lifshitz E.M. Statistical Physics, 3d Edition, Pergamon Press. 1980. 562 p. [Google Scholar]
  68. N.A. Bulychev. Obtaining of Gaseous Hydrogen and Silver Nanoparticles by Decomposition of Hydrocarbons in Ultrasonically Stimulated Low-Temperature Plasma, International Journal of Hydrogen Energy, 2022, Vol. 47, I. 50, pp.21323–21328. [CrossRef] [Google Scholar]
  69. N.A. Bulychev, A.Yu. Burova. Unerroric of control of mutual compliance of the efficiency of hydrogen engines of unmanned vehicles in the conditions of mass production, International Journal of Hydrogen Energy, 2022, Vol. 47, I. 63, pp.26789–26797. [Google Scholar]
  70. N.A. Bulychev. Synthesis of Gaseous Hydrogen and Nanoparticles of Silicon and Silica by Pyrolysis of Tetraethoxysilane in an Electric Discharge under the Ultrasonic Action, International Journal of Hydrogen Energy, 2022, Vol. 47, I. 84, pp.35581–35587. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.