Open Access
Issue
E3S Web of Conf.
Volume 463, 2023
III International Conference on Improving Energy Efficiency, Environmental Safety and Sustainable Development in Agriculture (EESTE2023)
Article Number 01013
Number of page(s) 11
Section Sustainable Development in Agriculture
DOI https://doi.org/10.1051/e3sconf/202346301013
Published online 13 December 2023
  1. Skea, J., Shukla, P., Reisinger, A., Slade, R., Pathak, M., Khourdajie, A., Diemen, R.: Climate Change 2022 Mitigation of Climate Change. 2022, p. 2913 [Google Scholar]
  2. Scharlemann, J.P.W., Tanner, E.V.J., Hiederer, R., Kapos, V.: Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag. 5, 81 (2014) [CrossRef] [Google Scholar]
  3. Kan, Z.R., Liu, Q.Y., Wu, G., Ma, S.T., Virk, A.L., Qi, J.Y., Zhao, X., Zhang, H.L.: Temperature and moisture driven changes in soil carbon sequestration and mineralization under biochar addition. J. Clean. Prod. 265, 121921 (2020) [CrossRef] [Google Scholar]
  4. Crowther, T.W., Todd-Brown, K.E.O., Rowe, C.W., Wieder, W.R., Carey, J.C., MacHmuller, M.B., Snoek, B.L., Fang, S., Zhou, G., Allison, S.D., Blair, J.M., Bridgham, S.D., Burton, A.J., Carrillo, Y., Reich, P.B., Clark, J.S., Classen, A.T., Dijkstra, F.A., Elberling, B., Emmett, B.A., Estiarte, M., Frey, S.D., Guo, J., Harte, J., Jiang, L., Johnson, B.R., Kroël-Dulay, G., Larsen, K.S., Laudon, H., Lavallee, J.M., Luo, Y., Lupascu, M., Ma, L.N., Marhan, S., Michelsen, A., Mohan, J., Niu, S., Pendall, E., Peñuelas, J., Pfeifer-Meister, L., Poll, C., Reinsch, S., Reynolds, L.L., Schmidt, I.K., Sistla, S., Sokol, N.W., Templer, P.H., Treseder, K.K., Welker, J.M., Bradford, M.A.: Quantifying global soil carbon losses in response to warming. Nature. 540, 104 (2016) [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  5. Meyer, N., Welp, G., Amelung, W.: The Temperature Sensitivity (Q10) of Soil Respiration: Controlling Factors and Spatial Prediction at Regional Scale Based on Environmental Soil Classes. Global Biogeochem. Cycles. 32, 306 (2018) [CrossRef] [Google Scholar]
  6. Drobník, J.: The effect of temperature on soil respiration. Folia Microbiol. 1962 72. 7, 132 (1962) [Google Scholar]
  7. Hamdi, S., Moyano, F., Sall, S., Bernoux, M., Chevallier, T.: Synthesis analysis of the temperature sensitivity of soil respiration from laboratory studies in relation to incubation methods and soil conditions. Soil Biol. Biochem. 58, 115 (2013) [CrossRef] [Google Scholar]
  8. Gritsch, C., Zimmermann, M., Zechmeister-Boltenstern, S.: Interdependencies between temperature and moisture sensitivities of CO2 emissions in European land ecosystems. Biogeosciences. 12, 5981 (2015) [CrossRef] [Google Scholar]
  9. Zhou, T., Shi, P., Hui, D., Luo, Y.: Global pattern of temperature sensitivity of soil heterotrophic respiration (Q10) and its implications for carbon-climate feedback. J. Geophys. Res. Biogeosciences. 114, (2009) [Google Scholar]
  10. Glaser, B., Lehmann, J., Zech, W.: Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - A review. Biol. Fertil. Soils. 35, 219 (2002) [CrossRef] [Google Scholar]
  11. Lehmann, J.: A handful of carbon. Nature. 447, 143 (2007) [CrossRef] [PubMed] [Google Scholar]
  12. Agegnehu, G., Bass, A.M., Nelson, P.N., Bird, M.I.: Benefits of biochar, compost and biochar-compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 543, 295 (2016) [CrossRef] [Google Scholar]
  13. Shaaban, M., Van Zwieten, L., Bashir, S., Younas, A., Núñez-Delgado, A., Chhajro, M.A., Kubar, K.A., Ali, U., Rana, M.S., Mehmood, M.A., Hu, R.: A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. J. Environ. Manage. 228, 429 (2018) [CrossRef] [Google Scholar]
  14. Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D.: Biochar effects on soil biota – A review. Soil Biol. Biochem. 43, 1812 (2011) [CrossRef] [Google Scholar]
  15. Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., Zheng, B.: Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 36, (2016) [CrossRef] [Google Scholar]
  16. Molnár, M., Vaszita, E., Farkas, É., Ujaczki, É., Fekete-Kertész, I., Tolner, M., Klebercz, O., Kirchkeszner, C., Gruiz, K., Uzinger, N., Feigl, V.: Acidic sandy soil improvement with biochar — A microcosm study. Sci. Total Environ. 563–564, 855 (2016) [CrossRef] [Google Scholar]
  17. Yang, Y., Sun, K., Liu, J., Chen, Y., Han, L.: Changes in soil properties and CO2 emissions after biochar addition: Role of pyrolysis temperature and aging. Sci. Total Environ. 839, 156333 (2022) [CrossRef] [Google Scholar]
  18. Jiang, X., Tan, X., Cheng, J., Haddix, M.L., Cotrufo, M.F.: Interactions between aged biochar, fresh low molecular weight carbon and soil organic carbon after 3.5 years soil-biochar incubations. Geoderma. 333, 99 (2019) [CrossRef] [Google Scholar]
  19. Pokharel, P., Chang, S.X.: Manure pellet, woodchip and their biochars differently affect wheat yield and carbon dioxide emission from bulk and rhizosphere soils. Sci. Total Environ. 659, 463 (2019) [CrossRef] [Google Scholar]
  20. Juriga, M., Šimanský, V., Horák, J., Kondrlová, E., Igaz, D., Polláková, N., Buchkina, N., Balashov, E.: The effect of different rates of biochar and biochar in combination with N fertilizer on the parameters of soil organic matter and soil structure. J. Ecol. Eng. 19, 153 (2018) [CrossRef] [Google Scholar]
  21. Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., Zhang, X.: Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. 351, 263 (2012) [Google Scholar]
  22. Gao, J., Zhao, Y., Zhang, W., Sui, Y., Jin, D., Xin, W., Yi, J., He, D.: Biochar prepared at different pyrolysis temperatures affects urea-nitrogen immobilization and N2O emissions in paddy fields. PeerJ. 2019, (2019) [Google Scholar]
  23. Glazunova, D.M., Kuryntseva, P.A., Selivanovskaya, S.Y., Galitskaya, P.Y.: Assessing the Potential of Using Biochar as a Soil Conditioner. In: IOP Conference Series: Earth and Environmental Science (2018) [Google Scholar]
  24. Asai, H., Samson, B.K., Stephan, H.M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T., Horie, T.: Biochar amendment techniques for upland rice production in Northern Laos. 1. Soil physical properties, leaf SPAD and grain yield. F. Crop. Res. 111, 81 (2009) [CrossRef] [Google Scholar]
  25. Ding, Y., Liu, Y.G., Liu, S.B., Huang, X.X., Li, Z.W., Tan, X., Zeng, G.M., Zhou, L., Yang, D., Yunguo, L., Shaobo, L., Xixian, H., Zhongwu, L., Xiaofei, T., Guangming, Z., Lu, Z., Ding, Y., Liu, Y.G., Liu, S.B., Huang, X.X., Li, Z.W., F, T.X., Zeng, G.M., Zhou, L.: Potential Benefits of Biochar in Agricultural Soils: A Review. Pedosphere. 27, 645 (2017) [CrossRef] [Google Scholar]
  26. Li, S., Wang, S., Shangguan, Z.: Combined biochar and nitrogen fertilization at appropriate rates could balance the leaching and availability of soil inorganic nitrogen. Agric. Ecosyst. Environ. 276, 21 (2019) [CrossRef] [Google Scholar]
  27. Cornelissen, G., Martinsen, V., Shitumbanuma, V., Alling, V., Breedveld, G., Rutherford, D., Sparrevik, M., Hale, S., Obia, A., Mulder, J.: Biochar effect on maize yield and soil. Characteristics in five conservation farming sites in Zambia. Agronomy. 3, 256 (2013) [Google Scholar]
  28. Goldan, E., Nedeff, V., Barsan, N., Culea, M., Tomozei, C., Panainte-Lehadus, M., Mosnegutu, E.: Evaluation of the Use of Sewage Sludge Biochar as a Soil Amendment—A Review. Sustain. 2022, Vol. 14, Page 5309. 14, 5309 (2022) [Google Scholar]
  29. Gonet, S.S., Debska, B.: Dissolved organic carbon and dissolved nitrogen in soil under different fertilization treatments. Plant, Soil Environ. 52, 55 (2006) [CrossRef] [Google Scholar]
  30. Larionova, A.A., Yermolayev, A.M., Blagodatsky, S.A., Rozanova, L.N., Yevdokimov, I. V., Orlinsky, D.B.: Soil respiration and carbon balance of gray forest soils as affected by land use. Biol. Fertil. Soils. 27, 251 (1998) [CrossRef] [Google Scholar]
  31. Jeffery, S., Verheijen, F.G.A., van der Velde, M., Bastos, A.C.: A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 144, 175 (2011) [CrossRef] [Google Scholar]
  32. Uzoma, K.C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., Nishihara, E.: Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 27, 205 (2011) [CrossRef] [Google Scholar]
  33. Wang, J., Wang, S.: Preparation, modification and environmental application of biochar: A review, (2019) [Google Scholar]
  34. Zhang, Y., Wang, J., Feng, Y.: The effects of biochar addition on soil physicochemical properties: A review. Catena. 202, (2021) [Google Scholar]
  35. Castaldi, S., Riondino, M., Baronti, S., Esposito, F.R., Marzaioli, R., Rutigliano, F.A., Vaccari, F.P., Miglietta, F.: Impact of biochar application to a Mediterranean wheat crop on soil microbial activity and greenhouse gas fluxes. Chemosphere. 85, 1464 (2011) [CrossRef] [Google Scholar]
  36. Lehmann, J., Joseph, S.: Biochar for environmental management – an introduction. In: Biochar for Environmental Management (2009) [Google Scholar]
  37. Atkinson, C.J., Fitzgerald, J.D., Hipps, N.A.: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil. 337, 1 (2010) [CrossRef] [Google Scholar]
  38. Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I., Xu, X.: Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. 41, 210 (2009) [Google Scholar]
  39. Laird, D., Fleming, P., Wang, B., Horton, R., Karlen, D.: Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma. 158, 436 (2010) [CrossRef] [Google Scholar]
  40. Singh, B.P., Cowie, A.L.: Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci Rep-UK. 4, (2014) [Google Scholar]
  41. Chen, J., Li, S., Liang, C., Xu, Q., Li, Y., Qin, H., Fuhrmann, J.J.: Response of microbial community structure and function to short-term biochar amendment in an intensively managed bamboo (Phyllostachys praecox) plantation soil: effect of particle size and addition rate. Sci Total Env. 574, 24 (2017) [CrossRef] [Google Scholar]
  42. Chen, J., Sun, X., Zheng, J., Zhang, X., Liu, X., Bian, R., Li, L., Cheng, K., Zheng, J., Pan, G.: Biochar amendment changes temperature sensitivity of soil respiration and composition of microbial communities 3 years after incorporation in an organic carbon-poor dry cropland soil. Biol. Fertil. Soils. 54, 175 (2018) [CrossRef] [Google Scholar]
  43. Blagodatskaya, E., Kuzyakov, Y.: Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biol. Biochem. 67, e228 (2013) [Google Scholar]
  44. Schlesinger, W.H., Andrews, J.A.: Soil respiration and the global carbon cycle. Biogeochemistry. 48, 7 (2000) [CrossRef] [Google Scholar]
  45. Jones, D.L., Murphy, D. V., Khalid, M., Ahmad, W., Edwards-Jones, G., DeLuca, T.H.: Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol. Biochem. 43, 1723 (2011) [CrossRef] [Google Scholar]
  46. Maestrini, B., Herrmann, A.M., Nannipieri, P., Schmidt, M.W.I., Abiven, S.: Ryegrass-derived pyrogenic organic matter changes organic carbon and nitrogen mineralization in a temperate forest soil. Soil Biol Biochem. 69, 291 (2014) [CrossRef] [Google Scholar]
  47. Mitchell, P.J., Simpson, A.J., Soong, R., Simpson, M.J.: Shifts in microbial community and water-extractable organic matter composition with biochar amendment in a temperate forest soil. 81, 244 (2015) [Google Scholar]
  48. Zhou, H., Zhang, D., Wang, P., Liu, X., Cheng, K., Li, L., Zheng, J., Zhang, X., Zheng, J., Crowley, D., van Zwieten, L., Pan, G.: Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: a meta- analysis. Agric Ecosyst Env. 239, 80 (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.