Open Access
Issue |
E3S Web of Conf.
Volume 465, 2023
8th International Conference on Industrial, Mechanical, Electrical and Chemical Engineering (ICIMECE 2023)
|
|
---|---|---|
Article Number | 01014 | |
Number of page(s) | 11 | |
Section | Symposium on Mechanical, Chemical, and Advanced Materials Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202346501014 | |
Published online | 18 December 2023 |
- Y. Chen, A. K. Awasthi, F. Wei, Q. Tan, and J. Li, “Single-use plastics: Production, usage, disposal, and adverse impacts,” Sci. Total Environ., vol. 752, p. 141772, 2021, doi: 10.1016/j.scitotenv.2020.141772. [CrossRef] [Google Scholar]
- I. Vollmer et al., “Beyond Mechanical Recycling: Giving New Life to Plastic Waste,” Angew. Chemie - Int. Ed., vol. 59, no. 36, pp. 15402– 15423, 2020, doi: 10.1002/anie.201915651. [CrossRef] [PubMed] [Google Scholar]
- G. Billard and J. Boucher, “The challenges of measuring plastic pollution,” F. Actions Sci. Rep., vol. 2019, no. Special Issue 19, pp. 68–75, 2019. [Google Scholar]
- Y. Chae and Y. An, “Current research trends on plastic pollution and ecological impacts on the soil ecosystem : A review *,” Environ. Pollut., vol. 240, pp. 387–395, 2018, doi: 10.1016/j.envpol.2018.05.008. [CrossRef] [Google Scholar]
- S. Rhein and K. F. Sträter, “Corporate self-commitments to mitigate the global plastic crisis: Recycling rather than reduction and reuse,” J. Clean. Prod., vol. 296, no. 2021, 2021, doi: 10.1016/j.jclepro.2021.126571. [CrossRef] [Google Scholar]
- W. W. Y. Lau et al., “Evaluating scenarios toward zero plastic pollution,” Science (80-. )., vol. 369, no. 6509, pp. 1455–1461, 2020, doi: 10.1126/SCIENCE.ABA9475. [CrossRef] [PubMed] [Google Scholar]
- C. Sandu, E. Takacs, G. Suaria, and F. Borgogno, “Society Role in the Reduction of Plastic Pollution,” no. June, 2020, doi: 10.1007/698. [Google Scholar]
- P. O. Awoyera and A. Adesina, “Plastic wastes to construction products: Status, limitations and future perspective,” Case Stud. Constr. Mater., vol. 12, p. e00330, 2020, doi: 10.1016/j.cscm.2020.e00330. [Google Scholar]
- I. Turku, A. Keskisaari, T. Kärki, A. Puurtinen, and P. Marttila, “Characterization of wood plastic composites manufactured from recycled plastic blends,” Compos. Struct., vol. 161, pp. 469–476, 2017, doi: 10.1016/j.compstruct.2016.11.073. [CrossRef] [Google Scholar]
- M. Y. Khalid, A. Al Rashid, Z. U. Arif, W. Ahmed, H. Arshad, and A. A. Zaidi, “Natural fiber reinforced composites: Sustainable materials for emerging applications,” Results Eng., vol. 11, no. July, p. 100263, 2021, doi: 10.1016/j.rineng.2021.100263. [CrossRef] [Google Scholar]
- L. Kerni, S. Singh, A. Patnaik, and N. Kumar, “A review on natural fiber reinforced composites,” Mater. Today Proc., vol. 28, pp. 1616–1621, 2020, doi: 10.1016/j.matpr.2020.04.851. [CrossRef] [Google Scholar]
- A. K. Singh, R. Bedi, and B. S. Kaith, “Mechanical properties of composite materials based on waste plastic - a review,” Mater. Today Proc., vol. 26, pp. 1293–1301, 2019, doi: 10.1016/j.matpr.2020.02.258. [CrossRef] [Google Scholar]
- V. Chauhan, T. Kärki, and J. Varis, “Review of natural fiber-reinforced engineering plastic composites, their applications in the transportation sector and processing techniques,” J. Thermoplast. Compos. Mater., vol. 35, no. 8, pp. 1169–1209, 2022, doi: 10.1177/0892705719889095. [CrossRef] [Google Scholar]
- M. Hyvärinen, M. Ronkanen, and T. Kärki, “The effect of the use of construction and demolition waste on the mechanical and moisture properties of a wood-plastic composite,” Compos. Struct., vol. 210, pp. 321–326, Feb. 2019, doi: 10.1016/J.COMPSTRUCT.2018.11.063. [CrossRef] [Google Scholar]
- D. Stoof and K. Pickering, “Sustainable composite fused deposition modelling filament using recycled pre-consumer polypropylene,” Compos. Part B Eng., vol. 135, no. June 2017, pp. 110–118, 2018, doi: 10.1016/j.compositesb.2017.10.005. [CrossRef] [Google Scholar]
- H. Aiso-Sanada et al., “Basic wood properties of Borneo ironwood (Eusideroxylon zwageri) planted in Sarawak, Malaysia,” Tropics, vol. 28, no. 4, pp. 99–103, 2020, doi: 10.3759/tropics.ms19-10. [CrossRef] [Google Scholar]
- A. Syarief, A. F. Hidayat, and A. Nugraha, “PENGARUH FRAKSI VOLUME TERHADAP KUAT TEKAN DAN LENTUR KOMPOSIT BERPENGUAT SERBUK KAYU ULIN (Eusideroxylon Zwageri) BERMATRIK POLYESTER 1,2,3),” vol. 8, no. 2, pp. 132–140, 2021. [Google Scholar]
- E. T. Maryanto and R. Ruzuqi, “Analysis of the Mechanical Properties of Natural Composites Matoa Tree Wood as the Foundation for Environmentally Friendly House Piles,” 2021. [Google Scholar]
- B. Irawan, “Physical and Mechanical Properties of Four Varieties of Ironwood,” J. Ilmu Teknol. Kayu Trop., vol. 14, no. 2, pp. 176–182, 2016. [Google Scholar]
- K. H. Timotius and I. Rahayu, “Ethnopharmacological Relevance of Eusideroxylon Zwageri Teijsm. et Binnend: A Review,” Syst. Rev. Pharm., vol. 12, no. 1, pp. 1619–1623, 2021. [Google Scholar]
- Y. Peng, S. S. Nair, H. Chen, N. Yan, and J. Cao, “Effects of Lignin Content on Mechanical and Thermal Properties of Polypropylene Composites Reinforced with Micro Particles of Spray Dried Cellulose Nanofibrils,” ACS Sustain. Chem. Eng., vol. 6, no. 8, pp.11078–11086, 2018, doi: 10.1021/acssuschemeng.8b02544. [CrossRef] [Google Scholar]
- S. W. Rojanathavorn C, Paveenchana C, Rungseesantivanon W, “Wood Plastic Composites ( WPC ) from Ironwood ( Xylia xylocarpa ) for Wood floor application,” World Congr. Adv. Civil, Environ. Materail Res., no. (AMEM 14), 2014. [Google Scholar]
- J. S. S. Neto, R. A. A. Lima, D. K. K. Cavalcanti, J. P. B. Souza, R. A. A. Aguiar, and M. D. Banea, “Effect of chemical treatment on the thermal properties of hybrid natural fiber-reinforced composites,” J. Appl. Polym. Sci., vol. 136, no. 10, 2019, doi: 10.1002/app.47154. [Google Scholar]
- D. Verma and K. L. Goh, “Effect of mercerization/alkali surface treatment of natural fibres and their utilization in polymer composites: Mechanical and morphological studies,” J. Compos. Sci., vol. 5, no. 7, 2021, doi: 10.3390/jcs5070175. [CrossRef] [Google Scholar]
- J. L. Thomason and J. L. Rudeiros-Fernández, “A review of the impact performance of natural fiber thermoplastic composites,” Front. Mater., vol. 5, no. September, pp. 1–18, 2018, doi: 10.3389/fmats.2018.00060. [CrossRef] [Google Scholar]
- H. Tian et al., “Enhanced Interfacial Adhesion and Properties of Polypropylene/Carbon Fiber Composites by Fiber Surface Oxidation in Presence of a Compatibilizer,” Polym. Compos., vol. 40, pp. E654–E662, 2019, doi: 10.1002/pc.24938. [CrossRef] [Google Scholar]
- S. M. Yadav, M. A. R. Lubis, and K. Sihag, “A Comprehensive Review on Process and Technological Aspects of Wood-Plastic Composites,” vol. 9, no. May, pp. 329–356, 2021. [Google Scholar]
- P. Kuo, S. Wang, J. Chen, H. Hsueh, and M. Tsai, “Effects of material compositions on the mechanical properties of wood – plastic composites manufactured by injection molding,” Mater. Des., vol. 30, no. 9, pp. 3489–3496, 2009, doi: 10.1016/j.matdes.2009.03.012. [CrossRef] [Google Scholar]
- S. Madhavi, N. V Raju, and J. Johns, “Characterization of Bamboo - Polypropylene Composites : Effect of Coupling Agent,” vol. 0, no. 0, pp. 1–9, 2021, doi: 10.1007/s12221-021-0027-9. [Google Scholar]
- M. A. Abdelwahab, M. Misra, and A. K. Mohanty, “Industrial Crops & Products Injection molded biocomposites from polypropylene and lignin : Effect of compatibilizers on interfacial adhesion and performance,” Ind. Crop. Prod., vol. 132, no. February, pp. 497–510, 2019, doi: 10.1016/j.indcrop.2019.02.026. [CrossRef] [Google Scholar]
- B. D. De Castro et al., “Recycled Green PE Composites Reinforced with Woven and Randomly Arranged Sisal Fibres Processed by Hot Compression Moulding,” Acta Technol. Agric., vol. 23, no. 2, pp. 81–86, 2020, doi: 10.2478/ata-2020-0013. [Google Scholar]
- J. Xie, S. Wang, Z. Cui, and J. Wu, “Process optimization for compression molding of carbon fiber-reinforced thermosetting polymer,” Materials (Basel)., vol. 12, no. 15, pp. 1–13, 2019, doi: 10.3390/ma12152430. [Google Scholar]
- R. A. Tatara, 14 Compression Molding, Second Edi. Elsevier Inc., 2017. doi: 10.1016/B978-0-323-39040-8/00014-6. [Google Scholar]
- I. Tharazi et al., “Optimization of Hot Press Parameters on Tensile Strength for Unidirectional Long Kenaf Fiber Reinforced Polylactic-Acid Composite,” Procedia Eng., vol. 184, pp. 478–485, 2017, doi: 10.1016/j.proeng.2017.04.150. [CrossRef] [Google Scholar]
- M. I. M. Kandar and H. M. Akil, “Application of Design of Experiment (DoE) for Parameters Optimization in Compression Moulding for Flax Reinforced Biocomposites,” Procedia Chem., vol. 19, pp. 433–440, 2016, doi: 10.1016/j.proche.2016.03.035. [CrossRef] [Google Scholar]
- A. Syarief, T. I. Sofian, and A. G. Budianto, “Pengaruh fraksi volume dan orientasi sudut serat komposit polyester-serbuk kayu ulin ( eusideroxylon zwageri ) -kawat kasa terhadap kekuatan bending,” vol. 11, no. 2, pp. 260–265, 2022. [Google Scholar]
- N. Hongsriphan, “Polymer Chemistry (POL-1165) 1217,” no. 1165, pp. 1217–1222, 2016. [Google Scholar]
- T. Jiang and G. Zeng, “An Online Extrusion-compression Molding Method to Produce Wood Plastic Composite Packaging Boxes,” Fibers Polym., vol. 20, no. 4, pp. 804–810, 2019, doi: 10.1007/s12221-019-1053-8. [CrossRef] [Google Scholar]
- M. N. Ahmad et al., “Application of Taguchi Method to Optimize the Parameter of Fused Deposition Modeling (FDM) Using Oil Palm Fiber Reinforced Thermoplastic Composites,” Polymers (Basel)., vol. 14, no. 11, 2022, doi: 10.3390/polym14112140. [Google Scholar]
- A. R. Patil and A. D. Desai, “Optimization of application of 2-ethyl-hexyl-nitrate on partial substitution of ethanol in CI engine for fuel economy and emission control using MADM method,” SN Appl. Sci., vol. 1, no. 2, 2019, doi: 10.1007/s42452-019-0163-7. [Google Scholar]
- J. Sudeepan, K. Kumar, T. K. Barman, and P. Sahoo, “Study of Friction and Wear of ABS/Zno Polymer Composite Using Taguchi Technique,” Procedia Mater. Sci., vol. 6, no. Icmpc, pp. 391– 400, 2014, doi: 10.1016/j.mspro.2014.07.050. [CrossRef] [Google Scholar]
- V. K. Vankanti and V. Ganta, “Optimization of process parameters in drilling of GFRP composite using Taguchi method,” J. Mater. Res. Technol., vol. 3, no. 1, pp. 35–41, 2014, doi: 10.1016/j.jmrt.2013.10.007. [CrossRef] [Google Scholar]
- L. K. Pan, C. C. Wang, S. L. Wei, and H. F. Sher, “Optimizing multiple quality characteristics via Taguchi method-based Grey analysis,” J. Mater. Process. Technol., vol. 182, no. 1–3, pp. 107–116, 2007, doi: 10.1016/j.jmatprotec.2006.07.015. [CrossRef] [Google Scholar]
- K. Kumar and H. Singh, “Multi-Objective Optimization of Fused Deposition Modeling for Mechanical Properties of Biopolymer Parts Using the Grey-Taguchi Method,” Chinese J. Mech. Eng. (English Ed., vol. 36, no. 1, 2023, doi: 10.1186/s10033-023-00847-z. [Google Scholar]
- A. R. Asgary, A. Nourbakhsh, and M. Kohantorabi, “Composites : Part B Old newsprint / polypropylene nanocomposites using carbon nanotube : Preparation and characterization,” Compos. Part B, vol. 45, no. 1, pp. 1414–1419, 2013, doi: 10.1016/j.compositesb.2012.07.009. [CrossRef] [Google Scholar]
- R. Govindaraju, S. Jagannathan, M. Chinnasamy, and P. Kandhavadivu, “Optimization of process parameters for fabrication of wool fiber-reinforced polypropylene composites with respect to mechanical properties,” J. Eng. Fiber. Fabr., vol. 9, no. 3, pp. 126–133, 2014, doi: 10.1177/1558925014009003. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.