Open Access
Issue |
E3S Web of Conf.
Volume 465, 2023
8th International Conference on Industrial, Mechanical, Electrical and Chemical Engineering (ICIMECE 2023)
|
|
---|---|---|
Article Number | 01015 | |
Number of page(s) | 6 | |
Section | Symposium on Mechanical, Chemical, and Advanced Materials Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202346501015 | |
Published online | 18 December 2023 |
- H. Harapan et al., “Coronavirus disease 2019 (COVID-19): A literature review,” J. Infect. Public Health, vol. 13, no. 5, pp. 667–673, 2020, doi: 10.1016/j.jiph.2020.03.019. [CrossRef] [Google Scholar]
- S. Sangkham, “Studi Kasus di Teknik Termal,” vol. 21, no. September, 2020. [Google Scholar]
- P. Esmaeilzadeh, “Public concerns and burdens associated with face mask-wearing: Lessons learned from the COVID-19 pandemic,” Prog. Disaster Sci., vol. 13, p. 100215, 2022, doi: 10.1016/j.pdisas.2022.100215. [CrossRef] [Google Scholar]
- M. H. Hakim, R. Irmawanto, and P. Poniman, “Rancang Bangun Wastafel dan Portal Otomatis dengan Mempertimbangkan Antropometri Guna Mencegah Penularan COVID19,” Resist. (Elektronika Kendali Telekomun. Tenaga List. Komputer), vol. 4, no. 1, p. 29, 2021, doi: 10.24853/resistor.4.1.29-36. [CrossRef] [Google Scholar]
- S. E. Eikenberry et al., “To mask or not to mask: Modeling the potential for face mask use by the general public to curtail the COVID-19 pandemic,” Infect. Dis. Model., vol. 5, pp. 293– 308, Jan. 2020, doi: 10.1016/J.IDM.2020.04.001. [Google Scholar]
- S. Shukla, R. Khan, A. Saxena, and S. Sekar, “Microplastics from face masks: A potential hazard post Covid-19 pandemic,” Chemosphere, vol. 302, no. April, pp. 1–7, 2022, doi: 10.1016/j.chemosphere.2022.134805. [CrossRef] [PubMed] [Google Scholar]
- A. B. Irez, C. Okan, R. Kaya, and E. Cebe, “Development of recycled disposable mask based polypropylene matrix composites: Microwave self-healing via graphene nanoplatelets,” Sustain. Mater. Technol., vol. 31, no. September 2021, 2022, doi: 10.1016/j.susmat.2022.e00389. [Google Scholar]
- A. B. Irez, C. Okan, R. Kaya, and E. Cebe, “Development of recycled disposable mask based polypropylene matrix composites : Microwave self-healing via graphene nanoplatelets,” Sustain. Mater. Technol., vol. 31, no. December 2021, p. e00389, 2022, doi: 10.1016/j.susmat.2022.e00389. [Google Scholar]
- C. Crespo, G. Ibarz, C. Sáenz, P. Gonzalez, and S. Roche, “Study of Recycling Potential of FFP2 Face Masks and Characterization of the Plastic Mix-Material Obtained. A Way of Reducing Waste in Times of Covid-19,” Waste and Biomass Valorization, vol. 12, no. 12, pp. 6423–6432, 2021, doi: 10.1007/s12649-021-01476-0. [CrossRef] [PubMed] [Google Scholar]
- D. Battegazzore, F. Cravero, and A. Frache, “Development of disposable filtering mask recycled materials: Impact of blending with recycled mixed polyolefin and their aging stability,” Resour. Conserv. Recycl., vol. 177, p. 105974, Feb. 2022, doi: 10.1016/J.RESCONREC.2021.105974. [CrossRef] [Google Scholar]
- C. W. Su et al., “Optimization process parameters and adaptive quality monitoring injection molding process for materials with different viscosity,” Polym. Test., vol. 109, p. 107526, May 2022, doi: 10.1016/J.POLYMERTESTING.2022.107526. [CrossRef] [Google Scholar]
- A. Mourya, A. Nanda, K. Parashar, Sushant, and R. Kumar, “An explanatory study on defects in plastic molding parts caused by machine parameters in injection molding process,” Mater. Today Proc., Dec. 2022, doi: 10.1016/J.MATPR.2022.12.070. [Google Scholar]
- J. Gim and L. S. Turng, “A review of current advancements in high surface quality injection molding: Measurement, influencing factors, prediction, and control,” Polym. Test., vol. 115, p. 107718, Nov. 2022, doi: 10.1016/J.POLYMERTESTING.2022.107718. [CrossRef] [Google Scholar]
- P. Pachorkar, G. Singh, N. Agarwal, and A. Srivastava, “Multi response optimization of injection moulding process to reduce sink marks and cycle time,” Mater. Today Proc., Sep. 2022, doi: 10.1016/J.MATPR.2022.09.172. [Google Scholar]
- G. Boopathy, J. Udaya Prakash, K. Gurusami, and J. V. Sai Prasanna Kumar, “Investigation on process parameters for injection moulding of nylon 6/SiC and nylon 6/B4C composites,” Mater. Today Proc., vol. 52, pp. 1676–1681, Jan. 2022, doi: 10.1016/J.MATPR.2021.11.316. [CrossRef] [Google Scholar]
- F. G. Torres and G. E. De-la-Torre, “Face mask waste generation and management during the COVID-19 pandemic: An overview and the Peruvian case,” Sci. Total Environ., vol. 786, p. 147628, 2021, doi: 10.1016/j.scitotenv.2021.147628. [CrossRef] [Google Scholar]
- M. A. Efstratiou and O. Tzoraki, “Coronavirus survival on beach sand: Sun vs COVID-19,” Mar. Pollut. Bull., vol. 167, Jun. 2021, doi: 10.1016/J.MARPOLBUL.2021.112270. [CrossRef] [Google Scholar]
- A. R.., “Conceptual Design of Injection Mould Tool for Inlet Chamber of an Air Inflator,” Int. J. Res. Eng. Technol., vol. 03, no. 15, pp. 694–698, 2014, doi: 10.15623/ijret.2014.0315130. [Google Scholar]
- D. B. Rathod and R. A. Jain, Innovations in Infrastructure, vol. 757. Springer Singapore, 2019. doi: 10.1007/978-981-13-1966-2. [Google Scholar]
- Nagahanumaiah and B. Ravi, “Effects of injection molding parameters on shrinkage and weight of plastic part - Produced by DMLS mold,” Rapid Prototyp. J., vol. 15, no. 3, pp. 179–186, 2009, doi: 10.1108/13552540910960271. [CrossRef] [Google Scholar]
- S. P. Bhalerao, T.. Badgujar, and D. R. M. Jan, “Experimentation and Optimization of injection moulding process parameter through Taguchi method and Mould flow analysis,” Int. J. Eng. Trends Technol., vol. 51, no. 2, pp. 97–105, Sep. 2017, doi: 10.14445/22315381/IJETT-V51P218. [CrossRef] [Google Scholar]
- H. S. Park and T. T. Nguyen, “Optimization of injection molding process for car fender in consideration of energy efficiency and product quality,” J. Comput. Des. Eng., vol. 1, no. 4, pp. 256–265, 2014, doi: 10.7315/JCDE.2014.025. [Google Scholar]
- G. Wang, G. Zhao, H. Li, and Y. Guan, “Research on a new variotherm injection molding technology and its application on the molding of a large LCD panel,” Polym. - Plast. Technol. Eng., vol. 48, no. 7, pp. 671–681, 2009, doi: 10.1080/03602550902824549. [CrossRef] [Google Scholar]
- Z. Yang, H. Peng, W. Wang, and T. Liu, “Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites,” J. Appl. Polym. Sci., vol. 116, no. 5, pp. 2658–2667, 2010, doi: 10.1002/app. [CrossRef] [Google Scholar]
- C. J. Tzeng, Y. K. Yang, Y. H. Lin, and C. H. Tsai, “A study of optimization of injection molding process parameters for SGF and PTFE reinforced PC composites using neural network and response surface methodology,” Int. J. Adv. Manuf. Technol., vol. 63, no. 5–8, pp. 691–704, 2012, doi: 10.1007/s00170-012-3933-6. [CrossRef] [Google Scholar]
- O. Ogorodnyk, O. V. Lyngstad, M. Larsen, K. Wang, and K. Martinsen, Application of machine learning methods for prediction of parts quality in thermoplastics injection molding, vol. 484. Springer Singapore, 2019. doi: 10.1007/978-981-13-2375-1_30. [Google Scholar]
- J. Zhao, R. H. Mayes, G. Chen, H. Xie, and P. S. Chan, “Effects of Process Parameters on the Micro Molding Process,” Polym. Eng. Sci., vol. 43, no. 9, pp. 1542–1554, 2003, doi: 10.1002/pen.10130. [CrossRef] [Google Scholar]
- E. A. Berihun and T. M. Bogale, “Parameter Optimization of PET Plastic Preform Bottles in Injection Molding Process Using GreyBased Taguchi Method,” Adv. Mater. Sci. Eng., vol. 2022, 2022, doi: 10.1155/2022/4416602. [CrossRef] [Google Scholar]
- S. K. Tamang, D. Devi, M. Seenivasan, and N. Gopalsamy, “Optimization of surface roughness using Taguchi technique for aluminium metal matrix composite,” Mater. Today Proc., vol. 62, pp. 2029–2033, Jan. 2022, doi: 10.1016/J.MATPR.2022.02.400. [CrossRef] [Google Scholar]
- M. Altan, “Reducing shrinkage in injection moldings via the Taguchi, ANOVA and neural network methods,” Mater. Des., vol. 31, no. 1, pp. 599–604, Jan. 2010, doi: 10.1016/J.MATDES.2009.06.049. [CrossRef] [Google Scholar]
- S. Jozić, D. Bajić, and L. Celent, “Application of compressed cold air cooling: Achieving multiple performance characteristics in end milling process,” J. Clean. Prod., vol. 100, pp. 325–332, 2015, doi: 10.1016/j.jclepro.2015.03.095. [CrossRef] [Google Scholar]
- D. Annicchiarico, U. M. Attia, and J. R. Alcock, “Part mass and shrinkage in micro injection moulding: Statistical based optimisation using multiple quality criteria,” Polym. Test., vol. 32, no. 6, pp. 1079–1087, Sep. 2013, doi: 10.1016/J.POLYMERTESTING.2013.06.009. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.