Open Access
Issue
E3S Web of Conf.
Volume 465, 2023
8th International Conference on Industrial, Mechanical, Electrical and Chemical Engineering (ICIMECE 2023)
Article Number 02007
Number of page(s) 9
Section Symposium on Electrical, Information Technology, and Industrial Engineering
DOI https://doi.org/10.1051/e3sconf/202346502007
Published online 18 December 2023
  1. K. Zhou, T. Liu, and L. Zhou, “Industry 4.0: Towards future industrial opportunities and challenges,” 2015 12th Int. Conf. Fuzzy Syst. Knowl. Discov. FSKD 2015, pp. 2147–2152, (2016), doi: 10.1109/FSKD.2015.7382284. [Google Scholar]
  2. H. Kagermann, W. Wahlster, and J. Helbig, “Recommendations for {Implementing} the {Strategic} {Initiative} {INDUSTRIE} 4.0 –{Securing} the {Future} of {German} {Manufacturing} {Industry},” no. April, (2013), [Online]. Available: https://www.bibsonomy.org/bibtex/25c352acf1857c1c1839c1a11fe9b 7e6c/flint63%0A http://forschungsunion.de/pdf/industrie_4_0_final_re port.pdf [Google Scholar]
  3. H. Mohelska and M. Sokolova, “Smart, connected products change a company’s business strategy orientation,” Appl. Econ., vol. 48, no. 47, pp. 4502–4509, (2016), doi 10.1080/00036846.2016.1158924. [CrossRef] [Google Scholar]
  4. M. Sabou, J. Kantorovitch, A. Nikolov, A. Tokmakoff, X. Zhou, and E. Motta, “Position paper on realizing smart products: Challenges for semantic web technologies,” CEUR Workshop Proc., vol. 522, pp. 135–147, (2009). [Google Scholar]
  5. A. D. Neal, R. G. Sharpe, P. P. Conway, and A. A. West, “smaRTI—A cyber-physical intelligent container for industry 4.0 manufacturing,” J. Manuf. Syst., vol. 52, no. April, pp. 63–75, (2019), doi 10.1016/j.jmsy.2019.04.011. [CrossRef] [Google Scholar]
  6. J. Lenz, E. MacDonald, R. Harik, and T. Wuest, “Optimizing smart manufacturing systems by extending the smart products paradigm to the beginning of life,” J. Manuf. Syst., vol. 57, no. July, pp. 274–286, (2020), doi: 10.1016/j.jmsy.2020.10.001. [CrossRef] [Google Scholar]
  7. F. Kammler, D. H. Kemmerich, J. Brinker, and O. Thomas, “Scrutinizing the design specifications of smart products: A practical evaluation in yachting,” 27th Eur. Conf. Inf. Syst. - Inf. Syst. a Shar. Soc. ECIS 2019, no. August 2020, (2020). [Google Scholar]
  8. M. Abdirad and K. Krishnan, “Industry 4.0 in Logistics and Supply Chain Management: A Systematic Literature Review,” EMJ - Eng. Manag. J., vol. 00, no. 00, pp. 1–15, (2020), doi: 10.1080/10429247.2020.1783935. [Google Scholar]
  9. K. Santos, E. Loures, F. Piechnicki, and O. Canciglieri, “Opportunities Assessment of Product Development Process in Industry 4.0,” Procedia Manuf., vol. 11, no. June, pp. 1358–1365, (2017), doi: 10.1016/j.promfg.2017.07.265. [CrossRef] [Google Scholar]
  10. J. H. Kahle, É. Marcon, A. Ghezzi, and A. G. Frank, “Smart Products value creation in SMEs innovation ecosystems,” Technol. Forecast. Soc. Change, vol. 156, no. February, p. 120024, (2020), doi 10.1016/j.techfore.2020.120024. [CrossRef] [Google Scholar]
  11. W. Maass, A. Filler, and S. Janzen, “Reasoning on smart products in consumer good domains,” Commun. Comput. Inf. Sci., vol. 11, pp. 165–173, (2008), doi: 10.1007/978-3-540-85379-4_21. [Google Scholar]
  12. H. Dawid et al., “Management science in the era of smart consumer products: challenges and research perspectives,” Cent. Eur. J. Oper. Res., vol. 25, no. 1, pp. 203–230, (2017), doi: 10.1007/s10100-0160436-9. [CrossRef] [Google Scholar]
  13. P. Mayer, D. Volland, F. Thiesse, and E. Fleisch, “User Acceptance of ’ Smart Products ’: An Empirical Investigation,” Wi, vol. Vol. 2, no. 2011, pp. 1063–1072, (2011). [Google Scholar]
  14. E. J. Hultink and S. A. Rijsdijk, “How Today’s Consumers Perceive Tomorrow’s Smart Products,” J. Prod. Innov. Manag., vol. 26, no. 1, pp. 24–42, (2009). [CrossRef] [Google Scholar]
  15. M. Mikusz, “Channel multiplicity in digitized, connected products,” Int. Conf. Inf. Syst. 2018, ICIS 2018, no. December, (2018). [Google Scholar]
  16. P. Zheng, X. Xu, and C. H. Chen, “A data-driven cyber-physical approach for personalized smart, connected product co-development in a cloud-based environment,” J. Intell. Manuf., vol. 31, no. 1, pp. 3– 18, (2020), doi: 10.1007/s10845-018-1430-y. [CrossRef] [Google Scholar]
  17. M. E. Porter and J. E. Heppelmann, “How smart, connected products are transforming competition,” Harv. Bus. Rev., no. November 2014, (2014). [Google Scholar]
  18. P. E. Michael and H. E. James, “How smart, connected products are transforming companies,” Harv. Bus. Rev., vol. 93, no. 10, pp. 96– 114, (2015), [Online]. Available: https://hbr.org/2015/10/how-smartconnected- products-are-transforming-companies [Google Scholar]
  19. A. G. Frank, L. S. Dalenogare, and N. F. Ayala, “Industry 4.0 technologies: Implementation patterns in manufacturing companies,” Int. J. Prod. Econ., vol. 210, no. September 2018, pp. 15–26, (2019), doi: 10.1016/j.ijpe.2019.01.004. [CrossRef] [Google Scholar]
  20. S. Aheleroff et al., “IoT-enabled smart appliances under industry 4.0: A case study,” Adv. Eng. Informatics, vol. 43, no. December 2019, p. 101043, (2020), doi: 10.1016/j.aei.2020.101043. [CrossRef] [Google Scholar]
  21. M. Sanchez, E. Exposito, and J. Aguilar, “Autonomic computing in manufacturing process coordination in industry 4.0 context,” J. Ind. Inf. Integr., vol. 19, no. November 2019, p. 100159, (2020), doi: 10.1016/j.jii.2020.100159. [Google Scholar]
  22. I. Bisio, C. Garibotto, A. Grattarola, F. Lavagetto, and A. Sciarrone, “Exploiting context-aware capabilities over the internet of things for industry 4.0 applications,” IEEE Netw., vol. 32, no. 3, pp. 108–114, (2018), doi: 10.1109/MNET.2018.1700355. [Google Scholar]
  23. K. Ding and P. Jiang, “Incorporating social sensors, cyber-physical system nodes, and smart products for personalized production in a social manufacturing environment,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 232, no. 13, pp. 2323–2338, (2018), doi: 10.1177/0954405417716728. [CrossRef] [Google Scholar]
  24. R. H. Murofushi and J. J. P. Z. S. Tavares, “Towards fourth industrial revolution impact: Smart product based on RFID technology,” IEEE Instrum. Meas. Mag., vol. 20, no. 2, pp. 51–55, (2017), doi: 10.1109/MIM.2017.7919135. [CrossRef] [Google Scholar]
  25. R. Kunst, L. Avila, A. Binotto, E. Pignaton, S. Bampi, and J. Rochol, “Improving devices communication in Industry 4.0 wireless networks,” Eng. Appl. Artif. Intell., vol. 83, no. September 2018, pp. 1–12, (2019), doi: 10.1016/j.engappai.2019.04.014. [CrossRef] [Google Scholar]
  26. D. Cozmiuc and I. Petrisor, “Industrie 4.0 by Siemens: Steps made next,” J. Cases Inf. Technol., vol. 20, no. 1, pp. 31–45, (2018), doi: 10.4018/JCIT.2018010103. [CrossRef] [Google Scholar]
  27. H. Khayyam et al., “A Novel Hybrid Machine Learning Algorithm for Limited and Big Data Modeling with Application in Industry 4.0,” IEEE Access, vol. 8, pp. 111381–111393, (2020), doi: 10.1109/ACCESS.2020.2999898. [CrossRef] [Google Scholar]
  28. P. Zawadzki and K. Zywicki, “Smart product design and production control for effective mass customization in the industry 4.0 concept,” Manag. Prod. Eng. Rev., vol. 7, no. 3, pp. 105–112, (2016), doi: 10.1515/mper-2016-0030. [Google Scholar]
  29. M. L. Nunes, A. C. Pereira, and A. C. Alves, “Smart products development approaches for Industry 4.0,” Procedia Manuf., vol. 13, pp. 1215–1222, (2017), doi: 10.1016/j.promfg.2017.09.035. [CrossRef] [Google Scholar]
  30. M. Bilal Ahmed, S. Imran Shafiq, C. Sanin, and E. Szczerbicki, “Towards Experience-Based Smart Product Design for Industry 4.0,” Cybern. Syst., vol. 50, no. 2, pp. 165–175, (2019), doi: 10.1080/01969722.2019.1565123. [CrossRef] [Google Scholar]
  31. H. Zhang, S. Qin, R. Li, Y. Zou, and G. Ding, “Environment interaction model-driven smart products through-life design framework,” Int. J. Comput. Integr. Manuf., vol. 33, no. 4, pp. 360– 376, (2020), doi: 10.1080/0951192X.2019.1686176. [CrossRef] [Google Scholar]
  32. R. Subramoniam, E. Sundin, S. Subramoniam, and D. Huisingh, “Riding the digital product life cycle waves towards a circular economy,” Sustain., vol. 13, no. 16, pp. 1–23, (2021), doi: 10.3390/su13168960. [Google Scholar]
  33. J. Barata and P. R. da Cunha, “The Viable Smart Product Model: Designing Products that Undergo Disruptive Transformations,” Cybern. Syst., vol. 50, no. 7, pp. 629–655, (2019), doi: 10.1080/01969722.2019.1646021. [CrossRef] [Google Scholar]
  34. G. Cao, Y. Sun, R. Tan, J. Zhang, and W. Liu, “A function-oriented biologically analogical approach for constructing the design concept of smart product in Industry 4.0,” Adv. Eng. Informatics, vol. 49, no. January, p. 101352, (2021), doi: 10.1016/j.aei.2021.101352. [CrossRef] [Google Scholar]
  35. E. Rauch, P. Dallasega, and D. T. Matt, “The Way from Lean Product Development (LPD) to Smart Product Development (SPD),” Procedia CIRP, vol. 50, pp. 26–31, (2016), doi: 10.1016/j.procir.2016.05.081. [CrossRef] [Google Scholar]
  36. M. Mühlhäuser, “Smart products: An introduction,” Commun. Comput. Inf. Sci., vol. 11, pp. 158–164, (2008), doi: 10.1007/978-3540-85379-4_20. [Google Scholar]
  37. A. Ângelo and J. Barata, “Digital transformation of legionella-safe cooling towers: an ecosystem design approach,” J. Facil. Manag., vol. 20, no. 3, pp. 485–500, (2021), doi: 10.1108/JFM-12-2020-0100. [Google Scholar]
  38. C. Münch, E. Marx, L. Benz, E. Hartmann, and M. Matzner, “Capabilities of digital servitization: Evidence from the sociotechnical systems theory,” Technol. Forecast. Soc. Change, vol. 176, no.February 2021, p. 121361, (2022), doi 10.1016/j.techfore.2021.121361. [CrossRef] [Google Scholar]
  39. M. A. Pisching, M. A. O. Pessoa, F. Junqueira, D. J. dos Santos Filho, and P. E. Miyagi, “An architecture based on RAMI 4.0 to discover equipment to process operations required by-products,” Comput. Ind. Eng., vol. 125, pp. 574– 591, (2018), doi: 10.1016/j.cie.2017.12.029. [CrossRef] [Google Scholar]
  40. G. Culot, G. Orzes, M. Sartor, and G. Nassimbeni, “The future of manufacturing: A Delphi-based scenario analysis on Industry 4.0,” Technol. Forecast. Soc. Change, vol. 157, no. December (2019), p. 120092, 2020, doi 10.1016/j.techfore.2020.120092. [CrossRef] [Google Scholar]
  41. O. E. Oluyisola, F. Sgarbossa, and J. O. Strandhagen, “Smart production planning and control: Concept, use-cases, and sustainability implications,” Sustain., vol. 12, no. 9, (2020), doi: 10.3390/su12093791. [Google Scholar]
  42. J. Huo, F. T. S. Chan, C. K. M. Lee, J. O. Strandhagen, and B. Niu, “Smart control of the assembly process with a fuzzy control system in the context of Industry 4.0,” Adv. Eng. Informatics, vol. 43, no. April 2019, p. 101031, (2020), doi: 10.1016/j.aei.2019.101031. [CrossRef] [Google Scholar]
  43. R. C. Santos and J. L. Martinho, “An Industry 4.0 maturity model proposal,” J. Manuf. Technol. Manag., vol. 31, no. 5, pp. 1023–1043, (2020), doi: 10.1108/JMTM-09-2018-0284. [Google Scholar]
  44. V. Jain and P. Ajmera, “Modelling the enablers of industry 4.0 in the Indian manufacturing industry,” Int. J. Product. Perform. Manag., vol. 70, no. 6, pp. 1233–1262, (2020), doi: 10.1108/IJPPM-07-2019-0317. [Google Scholar]
  45. Y. Yin and S. F. Qin, “A smart performance measurement approach for collaborative design in Industry 4.0,” Adv. Mech. Eng., vol. 11, no. 1, pp. 1–15, (2019), doi: 10.1177/1687814018822570. [Google Scholar]
  46. L. M. A. L. Dos Santos et al., “Industry 4.0 collaborative networks for industrial performance,” J. Manuf. Technol. Manag., vol. 32, no. 2, pp. 245–265, (2021), doi: 10.1108/JMTM-04-2020-0156. [CrossRef] [Google Scholar]
  47. S. M. Saad, R. Bahadori, and H. Jafarnejad, “The smart SME technology readiness assessment methodology in the context of industry 4.0,” J. Manuf. Technol. Manag., vol. 32, no. 5, pp. 1037–1065, (2021), doi: 10.1108/JMTM-07-2020-0267. [CrossRef] [Google Scholar]
  48. H. Hasbullah, S. A. Bareduan, and S. Hasibuan, “Developing I4.0 Readiness Index for Factory Operation in Indonesia to Enhance INDI 4.0,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 11, no. 4, pp. 1668– 1677, (2021), doi: 10.18517/ijaseit.11.4.14280. [CrossRef] [Google Scholar]
  49. H. J. Kim, “Verifying the test methods and certification criteria for new technological convergence products: Using living labs as a methodology,” Appl. Sci., vol. 10, no. 9, (2020), doi: 10.3390/app10093269. [Google Scholar]
  50. D. Beverungen, O. Müller, M. Matzner, J. Mendling, and J. vom Brocke, “Conceptualizing smart service systems,” Electron. Mark., vol. 29, no. 1, pp. 7–18, (2019), doi: 10.1007/s12525-017-0270-5. [CrossRef] [Google Scholar]
  51. X. Xu and Q. Hua, “Industrial Big Data Analysis in Smart Factory: Current Status and Research Strategies,” IEEE Access, vol. 5, no. c, pp. 17543– 17551, (2017), doi: 10.1109/ACCESS.2017.2741105. [CrossRef] [Google Scholar]
  52. D. Li, H. Tang, S. Wang, and C. Liu, “A big data enabled loadbalancing control for smart manufacturing of Industry 4.0,” Cluster Comput., vol. 20, no. 2, pp. 1855–1864, (2017), doi: 10.1007/s10586017-0852-1. [CrossRef] [Google Scholar]
  53. H. Unger, F. Börner, and E. Müller, “Context Related Information Provision in Industry 4.0 Environments,” Procedia Manuf., vol. 11, no. June, pp. 796–805, (2017), doi: 10.1016/j.promfg.2017.07.181. [CrossRef] [Google Scholar]
  54. A. Bougdira, I. Akharraz, and A. Ahaitouf, “A traceability proposal for industry 4.0,” J. Ambient Intell. Humaniz. Comput., vol. 11, no. 8, pp. 3355–3369, (2020), doi: 10.1007/s12652-019-01532-7. [CrossRef] [Google Scholar]
  55. A. Riel, C. Kreiner, G. Macher, and R. Messnarz, “Integrated design for tackling safety and security challenges of smart products and digital manufacturing,” CIRP Ann. ­ Manuf. Technol., vol. 66, no. 1, pp. 177–180, (2017), doi: 10.1016/j.cirp.2017.04.037. [CrossRef] [Google Scholar]
  56. T. Jałowiec and H. Wojtaszek, “Analysis of Directional Activities for Industry 4.0 in the Example of Poland and Germany,” Sustain., vol. 14, no. 7, (2022), doi: 10.3390/su14073848. [Google Scholar]
  57. Chopra, S., & Meindl, P. Supply Chain Management: Global Edition. In Supply Chain Management: Global Edition. (2016). [Google Scholar]
  58. Fahma, F., Sutopo, W., Pujiyanto, E., & Nizam, M. Developing Model of Technological Base Interoperability For Collaborating Multivariate-attribute Quality Control in Digital Supply Chain : A Preliminary Study. 71–83. https://doi.org/10.46254/au01.20220023. (2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.