Open Access
Issue |
E3S Web of Conf.
Volume 465, 2023
8th International Conference on Industrial, Mechanical, Electrical and Chemical Engineering (ICIMECE 2023)
|
|
---|---|---|
Article Number | 02027 | |
Number of page(s) | 7 | |
Section | Symposium on Electrical, Information Technology, and Industrial Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202346502027 | |
Published online | 18 December 2023 |
- P. S. Lum, “Development of robots for rehabilitation therapy: The Palo Alto VA/Stanford experience Predictive Analytics for Life Stressors View project Clinical exoskeleton for upper arm stroke rehabilitation View project,” 1999. [Online]. Available: https://www.researchgate.net/publication/1201518 [Google Scholar]
- M. Mashayekhi and M. M. Moghaddam, “EMGdriven fatigue-based self-adapting admittance control of a hand rehabilitation robot,” J Biomech, vol. 138, Jun. 2022, doi: 10.1016/j.jbiomech.2022.111104. [CrossRef] [PubMed] [Google Scholar]
- P. K. Artemiadis and K. J. Kyriakopoulos, “Assessment of muscle fatigue using a probabilistic framework for an EMG-based robot control scenario,” in 8th IEEE International Conference on BioInformatics and BioEngineering, BIBE 2008, 2008. doi: 10.1109/BIBE.2008.4696753. [Google Scholar]
- M. Mihelj, T. Nef, and R. Riener, “ARMin II-7 DoF rehabilitation robot: mechanics and kinematics.” [Google Scholar]
- A. Schiele, An Explicit Model to Predict and Interpret Constraint Force Creation in pHRI with Exoskeletons. IEEE Xplore, 2008. [Google Scholar]
- C. Nguiadem, M. Raison, and S. Achiche, “Motion planning of upper-limb exoskeleton robots: A review,” Applied Sciences (Switzerland), vol. 10, no. 21. MDPI AG, pp. 1–21, Nov. 01, 2020. doi: 10.3390/app10217626. [Google Scholar]
- Z. Pineda-Rico, J. A. S. de Lucio, F. J. M. Lopez, and P. Cruz, “Design of an exoskeleton for upper limb robot-assisted rehabilitation based on cosimulation,” Journal of Vibroengineering, vol. 18, no. 5, pp. 3269–3278, 2016, doi: 10.21595/jve.2016.16857. [CrossRef] [Google Scholar]
- L. M. Muratori, E. M. Lamberg, L. Quinn, and S. V. Duff, “Applying principles of motor learning and control to upper extremity rehabilitation,” Journal of Hand Therapy, vol. 26, no. 2, pp. 94– 103, Apr. 2013, doi: 10.1016/j.jht.2012.12.007. [CrossRef] [PubMed] [Google Scholar]
- A. Schiele and F. C. T. Van Der Helm, “Kinematic design to improve ergonomics in human machine interaction,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, no. 4, pp. 456–469, Dec. 2006, doi: 10.1109/TNSRE.2006.881565. [CrossRef] [PubMed] [Google Scholar]
- Z. Pang, T. Wang, Z. Wang, J. Yu, Z. Sun, and S. Liu, “Design and analysis of a wearable upper limb rehabilitation robot with characteristics of tension mechanism,” Applied Sciences (Switzerland), vol. 10, no. 6, Mar. 2020, doi: 10.3390/app10062101. [Google Scholar]
- S. Gupta, A. Agrawal, and E. Singla, “Toward Avoiding Misalignment: Dimensional Synthesis of Task-Oriented Upper-Limb Hybrid Exoskeleton,” Robotics, vol. 11, no. 4, Aug. 2022, doi: 10.3390/robotics11040074. [CrossRef] [Google Scholar]
- G. Vetrice and A. Deaconescu, “KINEMATIC ANALYSIS OF ELBOW REHABILITATION EQUIPMENT,” 2017. [Google Scholar]
- N. Plitea et al., “Kinematic analysis of an exoskeleton-based robot for elbow and wrist rehabilitation,” in Mechanisms and Machine Science, Springer Netherlands, 2018, pp. 424–433. doi: 10.1007/978-3-319-67567-1_40. [Google Scholar]
- Z. Zhu, J. Li, Z. Gan, and H. Zhang, “Kinematic and dynamic modelling for real-time control of Tau parallel robot,” Mech Mach Theory, vol. 40, no. 9, pp. 1051–1067, Sep. 2005, doi: 10.1016/j.mechmachtheory.2004.12.024. [CrossRef] [Google Scholar]
- L-W. Tsai, Robot Analysis: The Mechanics of Serial and Paralel Manipulators. 1999. [Google Scholar]
- E. Mohammadi, H. Zohoor, and S. M. Khadem, “Design and prototype of an active assistive exoskeletal robot for rehabilitation of elbow and wrist,” 2016. [Online]. Available: www.scientiairanica.com [Google Scholar]
- E. Pitawarno, Robotika (Desain, Kontrol, dan Kecerdasan Buatan). Yogyakarta: Andi OFFSET, 2006. [Google Scholar]
- F. Ding and C. Liu, “Applying coordinate fixed Denavit–Hartenberg method to solve the workspace of drilling robot arm,” Int J Adv Robot Syst, vol. 15, no. 4, Jul. 2018, doi: 10.1177/1729881418793283. [CrossRef] [Google Scholar]
- J. J. Craig, P. Prentice, and P. P. Hall, “Introduction to Robotics Mechanics and Control Third Edition,” 2005. [Google Scholar]
- H. Wang, Z. Zhou, X. Zhong, and Q. Chen, “Singular Configuration Analysis and Singularity Avoidance with Application in an Intelligent Robotic Manipulator,” Sensors, vol. 22, no. 3, Feb. 2022, doi: 10.3390/s22031239. [Google Scholar]
- P. S. Donelan, “SINGULARITIES OF ROBOT MANIPULATORS,” World Scientific Pub Co Pte Lt, Feb. 2007, pp. 189–217. doi: 10.1142/9789812707499_0006. [Google Scholar]
- Y. Umetani and K. Yoshida, “Resolved Motion Rate Control of Space Manipulators with Generalized Jacobian Matrix,” IEEE Transactions on Robotics and Automation, vol. 5, no. 3, pp. 303–314, 1989, doi: 10.1109/70.34766. [CrossRef] [Google Scholar]
- D. Li et al., “Dynamic analysis of multi-functional maintenance platform based on Newton-Euler method and improved virtual work principle,” Nuclear Engineering and Technology, vol. 52, no. 11, pp. 2630–2637, Nov. 2020, doi: 10.1016/j.net.2020.04.017. [CrossRef] [Google Scholar]
- penghimpun ergonomi indonesia, “Rekap Data Antropometri Indonesia,” http://www.antropometriindonesia.org/index.php/d etail/artikel/4/10/data_antropometri, 2013. [Google Scholar]
- S. Bruno, M. José, S. Filomena, C. Vítor, M. Demétrio, and B. Karolina, “The conceptual design of a mechatronic system to handle bedridden elderly individuals,” Sensors (Switzerland), vol. 16, no. 5, May 2016, doi: 10.3390/s16050725. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.