Open Access
Issue
E3S Web of Conf.
Volume 465, 2023
8th International Conference on Industrial, Mechanical, Electrical and Chemical Engineering (ICIMECE 2023)
Article Number 02041
Number of page(s) 6
Section Symposium on Electrical, Information Technology, and Industrial Engineering
DOI https://doi.org/10.1051/e3sconf/202346502041
Published online 18 December 2023
  1. P. Girardi, A. Gargiulo, and P. C. Brambilla, “A comparative LCA of an electric vehicle and an internal combustion engine vehicle using the appropriate power mix: the Italian case study,” Int. J. Life Cycle Assess., vol. 20, no. 8, pp. 1127– 1142, (2015), doi: 10.1007/s11367-015-0903-x. [CrossRef] [Google Scholar]
  2. H. Q. Nurhadi, R. Nurcahyo, and D. S. Gabriel, “Strategic development for a filter automotive component company in facing the electric vehicles era in indonesia,” Proc. Int. Conf. Ind. Eng. Oper. Manag., pp. 758–766, (2021). [Google Scholar]
  3. IEA, “Global EV Outlook 202,” 2020. [Online]. Available: https://www.iea.org/reports/global-ev-outlook-(2020) [Google Scholar]
  4. L. L. P. de Souza, E. E. S. Lora, J. C. E. Palacio, M. H. Rocha, M. L. G. Renó, and O. J. Venturini, “Comparative environmental life cycle assessment of conventional vehicles with different fuel options, plug-in hybrid and electric vehicles for a sustainable transportation system in Brazil,” J. Clean. Prod., vol. 203, pp. 444–468, (2018), doi: 10.1016/j.jclepro.2018.08.236. [CrossRef] [Google Scholar]
  5. D. A. Notter et al., “Erratum: Contribution of li-ion batteries to the environmental impact of electric vehicles (Environmental Science & Technology (2010) 44 (6550-6556)),” Environ. Sci. Technol., vol. 44, no. 19, p. 7744, (2010), doi: 10.1021/es1029156. [CrossRef] [Google Scholar]
  6. J. F. Peters, M. Baumann, B. Zimmermann, J. Braun, and M. Weil, “The environmental impact of Li-Ion batteries and the role of key parameters – A review,” Renew. Sustain. Energy Rev., vol. 67, pp. 491–506, (2017), doi: 10.1016/j.rser.2016.08.039. [CrossRef] [Google Scholar]
  7. E. Iswandi, M. Amrial, N. A. Sasongko, R. Laksmono, and H. T. Rahayu, “Tinjauan Kerangka Kerja Penilaian Siklus Hidup (LCA) Baterai Lithium-Ion Kendaraan Listrik,” in Seminar Teknologi Bahan dan Barang Teknik, (2020), pp. 202–209. [Google Scholar]
  8. L. A. W. Ellingsen, C. R. Hung, and A. H. Strømman, “Identifying key assumptions and differences in life cycle assessment studies of lithium-ion traction batteries with focus on greenhouse gas emissions,” Transp. Res. Part D Transp. Environ., vol. 55, pp. 82–90, (2017), doi: 10.1016/j.trd.2017.06.028. [CrossRef] [Google Scholar]
  9. M. A. Pellow, H. Ambrose, D. Mulvaney, R. Betita, and S. Shaw, “Research gaps in environmental life cycle assessments of lithium ion batteries for grid-scale stationary energy storage systems: End-of-life options and other issues,” Sustain. Mater. Technol., vol. 23, no. X, p. e00120, (2020), doi: 10.1016/j.susmat.2019.e00120. [Google Scholar]
  10. R. Nealer and T. P. Hendrickson, “Review of Recent Lifecycle Assessments of Energy and Greenhouse Gas Emissions for Electric Vehicles,” Curr. Sustain. Energy Reports, vol. 2, no. 3, pp. 66–73, (2015), doi: 10.1007/s40518-015-0033-x. [CrossRef] [Google Scholar]
  11. A. Nordelöf, M. Messagie, A. M. Tillman, M. Ljunggren Söderman, and J. Van Mierlo, “Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—what can we learn from life cycle assessment?,” Int. J. Life Cycle Assess., vol. 19, no. 11, pp. 1866–1890, (2014), doi: 10.1007/s11367-014-0788-0. [CrossRef] [Google Scholar]
  12. A. Temporelli, M. L. Carvalho, and P. Girardi, “Life cycle assessment of electric vehicle batteries: An overview of recent literature,” Energies, vol. 13, no. 11, (2020), doi: 10.3390/en13112864. [CrossRef] [Google Scholar]
  13. S. Pfister et al., “Understanding the LCA and ISO water footprint: A response to Hoekstra (2016) ‘A critique on the water-scarcity weighted water footprint in LCA,’” Ecol. Indic., vol. 72, pp. 352– 359, (2017), doi: 10.1016/j.ecolind.2016.07.051. [CrossRef] [Google Scholar]
  14. S. Bobba et al., “Life Cycle Assessment of repurposed electric vehicle batteries: an adapted method based on modelling energy flows,” J. Energy Storage, vol. 19, pp. 213–225, (2018), doi: 10.1016/j.est.2018.07.008. [CrossRef] [Google Scholar]
  15. R. Tolomeo, G. De Feo, R. Adami, and L. S. Osséo, “Application of life cycle assessment to lithium ion batteries in the automotive sector,” Sustain., vol. 12, no. 11, pp. 1–16, (2020), doi: 10.3390/su12114628. [Google Scholar]
  16. Z. Wu, M. Wang, J. Zheng, X. Sun, M. Zhao, and X. Wang, “Life cycle greenhouse gas emission reduction potential of battery electric vehicle,” J. Clean. Prod., vol. 190, pp. 462–470, (2018), doi: 10.1016/j.jclepro.2018.04.036. [CrossRef] [Google Scholar]
  17. X. Shu, Y. Guo, W. Yang, K. Wei, and G. Zhu, “Life-cycle assessment of the environmental impact of the batteries used in pure electric passenger cars,” Energy Reports, vol. 7, pp. 2302– 2315, (2021), doi: 10.1016/j.egyr.2021.04.038. [CrossRef] [Google Scholar]
  18. M. A. Cusenza, S. Bobba, F. Ardente, M. Cellura, and F. Di Persio, “Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles,” J. Clean. Prod., vol. 215, pp. 634–649, (2019), doi: 10.1016/j.jclepro.2019.01.056. [CrossRef] [Google Scholar]
  19. S. Wang and J. Yu, “A comparative life cycle assessment on lithium-ion battery: Case study on electric vehicle battery in China considering battery evolution,” Waste Manag. Res., vol. 39, no. 1, pp. 156–164, (2021), doi: 10.1177/0734242X20966637. [CrossRef] [PubMed] [Google Scholar]
  20. Q. Dai, J. C. Kelly, L. Gaines, and M. Wang, “Life Cycle Analysis of Lithium-Ion Batteries for Automotive Applications,” Batteries, vol. 5, no. 2, (2019). [Google Scholar]
  21. N. Wilson et al., “A physical allocation method for comparative life cycle assessment: A case study of repurposing Australian electric vehicle batteries,” Resour. Conserv. Recycl., vol. 174, no. July, p. 105759, (2021), doi: 10.1016/j.resconrec.2021.105759. [CrossRef] [Google Scholar]
  22. C. S. Ioakimidis, A. Murillo-Marrodán, A. Bagheri, D. Thomas, and K. N. Genikomsakis, “Life cycle assessment of a lithium iron phosphate (LFP) electric vehicle battery in second life application scenarios,” Sustain., vol. 11, no. 9, (2019), doi: 10.3390/su11092527. [Google Scholar]
  23. R. Ma and Y. Deng, “The electrochemical model coupled parameterized life cycle assessment for the optimized design of EV battery pack,” Int. J. Life Cycle Assess., vol. 27, no. 2, pp. 267–280, (2022), doi: 10.1007/s11367-022-02026-z. [CrossRef] [Google Scholar]
  24. C. Liu, J. Lin, H. Cao, Y. Zhang, and Z. Sun, “Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review,” J. Clean. Prod., vol. 228, no. 1, pp. 801–813, (2019), doi: 10.1016/j.jclepro.2019.04.304. [CrossRef] [Google Scholar]
  25. A. Picatoste, D. Justel, and J. M. F. Mendoza, “Circularity and life cycle environmental impact assessment of batteries for electric vehicles: Industrial challenges, best practices and research guidelines,” Renew. Sustain. Energy Rev., vol. 169, no. September, p. 112941, (2022), doi: 10.1016/j.rser.2022.112941. [CrossRef] [Google Scholar]
  26. P. Marques, R. Garcia, L. Kulay, and F. Freire, “Comparative life cycle assessment of lithium-ion batteries for electric vehicles addressing capacity fade,” J. Clean. Prod., vol. 229, pp. 787–794, (2019), doi: 10.1016/j.jclepro.2019.05.026. [CrossRef] [Google Scholar]
  27. M. Shafique and X. Luo, “Environmental life cycle assessment of battery electric vehicles from the current and future energy mix perspective,” J. Environ. Manage., vol. 303, no. October 2021, p. 114050, (2022), doi: 10.1016/j.jenvman.2021.114050. [CrossRef] [Google Scholar]
  28. M. Raugei and P. Winfield, “Prospective LCA of the production and EoL recycling of a novel type of Li-ion battery for electric vehicles,” J. Clean. Prod., vol. 213, pp. 926–932, (2019), doi: 10.1016/j.jclepro.2018.12.237. [CrossRef] [Google Scholar]
  29. X. Xia and P. Li, “A review of the life cycle assessment of electric vehicles: Considering the influence of batteries,” Sci. Total Environ., vol. 814, p. 152870, (2022), doi: 10.1016/j.scitotenv.2021.152870. [CrossRef] [Google Scholar]
  30. D. Burchart-Korol, S. Jursova, P. Folęga, and P. Pustejovska, “Life cycle impact assessment of electric vehicle battery charging in European Union countries,” J. Clean. Prod., vol. 257, (2020), doi: 10.1016/j.jclepro.2020.120476. [CrossRef] [Google Scholar]
  31. M. Lavigne Philippot et al., “Life cycle assessment of a lithiumion battery with a silicon anode for electric vehicles,” J. Energy Storage, vol. 60, no. August 2022, p. 106635, (2023), doi: 10.1016/j.est.2023.106635. [CrossRef] [Google Scholar]
  32. M. S. Koroma et al., “Life cycle assessment of battery electric vehicles: Implications of future electricity mix and different battery end-of-life management,” Sci. Total Environ., vol. 831, (2022), doi: 10.1016/j.scitotenv.2022.154859. [CrossRef] [Google Scholar]
  33. Y. Tao, Z. Wang, B. Wu, Y. Tang, and S. Evans, “Environmental life cycle assessment of recycling technologies for ternary lithium-ion batteries,” J. Clean. Prod., vol. 389, no. April 2022, (2023), doi: 10.1016/j.jclepro.2023.136008. [Google Scholar]
  34. M. Zackrisson, “Electrode for electric vehicle batteries – cells for Leaf, Tesla and Volvo bus,” p. 56, (2017), [Online]. Available: https://www.divaportal.org/smash/record.jsf?pid=diva2%3A1131667&dswid=-4241 [Google Scholar]
  35. R. Faria et al., “Primary and secondary use of electric mobility batteries from a life cycle perspective,” J. Power Sources, vol. 262, pp. 169– 177, (2014), doi: 10.1016/j.jpowsour.2014.03.092. [CrossRef] [Google Scholar]
  36. S. Wang and J. Yu, “Evaluating the electric vehicle popularization trend in China after 2020 and its challenges in the recycling industry,” Waste Manag. Res., vol. 39, no. 6, pp. 818– 827, Jun. (2021), doi: 10.1177/0734242X20953495. [CrossRef] [PubMed] [Google Scholar]
  37. S. Troy et al., “Life Cycle Assessment and resource analysis of all-solid-state batteries,” Appl. Energy, vol. 169, pp. 757–767, (2016), doi: 10.1016/j.apenergy.2016.02.064. [CrossRef] [Google Scholar]
  38. C. M. Lastoskie and Q. Dai, “Comparative life cycle assessment of laminated and vacuum vapor-deposited thin film solid-state batteries,” J. Clean. Prod., vol. 91, pp. 158–169, (2015), doi: 10.1016/j.jclepro.2014.12.003. [CrossRef] [Google Scholar]
  39. L. A. W. Ellingsen, G. Majeau-Bettez, B. Singh, A. K. Srivastava, L. O. Valøen, and A. H. Strømman, “Life Cycle Assessment of a Lithium-Ion Battery Vehicle Pack,” J. Ind. Ecol., vol. 18, no. 1, pp. 113–124, (2014), doi: 10.1111/jiec.12072. [CrossRef] [Google Scholar]
  40. M. C. McManus, “Environmental consequences of the use of batteries in low carbon systems: The impact of battery production,” Appl. Energy, vol. 93, pp. 288–295, (2012), doi: 10.1016/j.apenergy.2011.12.062. [CrossRef] [Google Scholar]
  41. B. Li, X. Gao, J. Li, and C. Yuan, “Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles,” Environ. Sci. Technol., vol. 48, no. 5, pp. 3047–3055, (2014), doi: 10.1021/es4037786. [CrossRef] [PubMed] [Google Scholar]
  42. H. S. Hamut, I. Dincer, and G. F. Naterer, “Exergoenvironmental analysis of hybrid electric vehicle thermal management systems,” J. Clean. Prod., vol. 67, pp. 187–196, (2014), doi: 10.1016/j.jclepro.2013.12.041. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.