Open Access
Issue
E3S Web of Conf.
Volume 465, 2023
8th International Conference on Industrial, Mechanical, Electrical and Chemical Engineering (ICIMECE 2023)
Article Number 02065
Number of page(s) 7
Section Symposium on Electrical, Information Technology, and Industrial Engineering
DOI https://doi.org/10.1051/e3sconf/202346502065
Published online 18 December 2023
  1. J. Ya’u Muhammad et al., “Recent Progressive Status of Materials for Solar Photovoltaic Cell: A Comprehensive Review,” Sci. J. Energy Eng., vol. 7, no. 4, p. 77, (2019), doi: 10.11648/j.sjee.20190704.14. [CrossRef] [Google Scholar]
  2. T. S. Bramhankar et al., “Effect of Nickel–Zinc Co-doped TiO2 blocking layer on performance of DSSCs,” J. Alloys Compd., vol. 817, p. 152810, (2020), doi: 10.1016/j.jallcom.2019.152810. [CrossRef] [Google Scholar]
  3. B. Ünlü and M. Özacar, “Effect of Cu and Mn amounts doped to TiO2 on the performance of DSSCs,” Sol. Energy, vol. 196, no. December 2019, pp. 448–456, (2020), doi: 10.1016/j.solener.2019.12.043. [CrossRef] [Google Scholar]
  4. Z. D. Mahmoudabadi, E. Eslami, and M. Narimisa, “Synthesis of Ag/TiO2 nanocomposite via plasma liquid interactions: Improved performance as photoanode in dye-sensitized solar cell,” J. Colloid Interface Sci., vol. 529, pp. 538– 546, (2018), doi: 10.1016/j.jcis.2018.06.048. [CrossRef] [Google Scholar]
  5. W. R. Aprilla and A. Haris, “Sintesis Semikonduktor TiO2 serta Aplikasinya pada Dye-Sensitized Solar Cell (DSSC) Menggunakan Dye Indigo Carmine,” J. Kim. Sains dan Apl., vol. 19, no. 3, pp. 111–117, (2016), doi: 10.14710/jksa.19.3.111-117. [CrossRef] [Google Scholar]
  6. F. I. M. Fazli et al., “Dye-sensitized solar Cell using pure anatase TiO2 annealed at different temperatures,” Optik (Stuttg)., vol. 140, pp. 1063– 1068, (2017), doi: 10.1016/j.ijleo.2017.04.027. [CrossRef] [Google Scholar]
  7. S. A. Pataya, P. L. Gareso, and E. Juarlin, “Karakterisasi lapisan tipis titanium dioksida (TiO2) yang ditumbuhkan dengan metode spin coating diatas substrat kaca,” Ophthalmology, vol. 104, no. 11, pp. 1785–1793, (2016). [Google Scholar]
  8. A. Supriyanto, W. M. Obina, T. Y. Septiawan, A. H. Ramelan, and F. Nurosyid, “Dye-sensitized solar cell (DSSC) performance of copper on TiO2 as a photoelectrode through nanocomposite and electroplating method,” J. Phys. Conf. Ser., vol. 1170, no. 1, (2019), doi: 10.1088/1742-6596/1170/1/012048. [CrossRef] [Google Scholar]
  9. T. Raguram and K. S. Rajni, “Synthesis and characterisation of Cu - Doped TiO2 nanoparticles for DSSC and photocatalytic applications,” Int. J. Hydrogen Energy, vol. 47, no. 7, pp. 4674–4689, (2022), doi: 10.1016/j.ijhydene.2021.11.113. [CrossRef] [Google Scholar]
  10. H. Esgin, Y. Caglar, and M. Caglar, “Photovoltaic performance and physical characterization of Cu doped ZnO nanopowders as photoanode for DSSC,” J. Alloys Compd., vol. 890, p. 161848, (2022), doi: 10.1016/j.jallcom.2021.161848. [CrossRef] [Google Scholar]
  11. A. Syukron, D. D. Risanti, and D. Sawitri, “PENGARUH PREPARASI PASTA DAN TEMPRATUR ANNEALING PADA DYE SENSITIZED SOLAR CELL(DSSC) BERBASIS NANOPARTIKEL ZnO,” J. Artik., vol. 2, no. 2, (2013). [Google Scholar]
  12. P. Pandey, M. R. Parra, F. Z. Haque, and R. Kurchania, “Effects of annealing temperature optimization on the efficiency of ZnO nanoparticles photoanode based dye sensitized solar cells,” J. Mater. Sci. Mater. Electron., vol. 28, no. 2, pp. 1537–1545, (2017), doi: 10.1007/s10854-016-5693-9. [CrossRef] [Google Scholar]
  13. L. Zhou et al., “Improved performance of dye sensitized solar cells using Cu-doped TiO 2 as photoanode materials : Band edge movement study by spectroelectrochemistry,” Chem. Phys., vol. 475, pp. 1–8, (2016), doi: 10.1016/j.chemphys.2016.05.018. [CrossRef] [Google Scholar]
  14. N. M. Safiay, R. A. Rani, N. Ezira, A. Azhar, Z. Khusaimi, and M. Rusop, “Influence of Different Annealing Temperatures on the Structural and Optical Properties of TiO 2 Nanoparticles Synthesized via Sol-Gel Method : Potential Application as UV Sensor,” vol. 21, no. 2, pp. 279–285, (2021), doi: 10.22146/ijc.52255. [Google Scholar]
  15. T. Raguram and K. S. Rajni, “Synthesis and analysing the structural, optical, morphological, photocatalytic and magnetic properties of TiO2 and doped (Ni and Cu) TiO2 nanoparticles by sol– gel technique,” Appl. Phys. A Mater. Sci. Process., vol. 125, no. 5, (2019), doi: 10.1007/s00339-019-2581-1. [CrossRef] [Google Scholar]
  16. R. Ahmadiasl, G. Moussavi, S. Shekoohiyan, and F. Razavian, “Synthesis of Cu-Doped TiO2 Nanocatalyst for the Enhanced Photocatalytic Degradation and Mineralization of Gabapentin under UVA/LED Irradiation: Characterization and Photocatalytic Activity,” Catalysts, vol. 12, no. 11, (2022), doi: 10.3390/catal12111310. [CrossRef] [Google Scholar]
  17. O. P. Choudhary and P. ka, “Scanning Electron Microscope: Advantages and Disadvantages in Imaging Components,” Int. J. Curr. Microbiol. Appl. Sci., vol. 6, no. 5, pp. 1877–1882, (2017), doi: 10.20546/ijcmas.2017.605.207. [CrossRef] [Google Scholar]
  18. J. F. Warman and D. Dahlan, “Sintesis Lapisan Titanium Dioxide dengan Doping Ganda Copper-Silver untuk Aplikasi Fotoanoda Dye Sensitized Solar Cell,” J. Fis. Unand, vol. 9, no. 3, pp. 415– 420, (2020), doi: 10.25077/jfu.9.3.415-420.2020. [CrossRef] [Google Scholar]
  19. A. Supriyanto, M. I. Darmawan, Hardani, and H. Darmaja, “Fabriksi Dye Sensitized Solar Cells ( DSSC ) Mengunakan Ekstraksi Bahan-bahan Organik Alam Celosia Argentums dan Lagerstromia sp,” J. Teknol., vol. 9, no. 3, pp. 1–14, (2013), [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/adma.1 9910030303/abstract. [Google Scholar]
  20. A. P. Winarni, K. Kusumandari, and A. H. Ramelan, “Optimasi Parameter Sintesis Nanopartikel TiO2 untuk Dye Sensitized Solar Cell,” J. Fis. dan Apl., vol. 10, no. 2, p. 90, (2014), doi: 10.12962/j24604682.v10i2.812. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.