Open Access
Issue |
E3S Web of Conf.
Volume 469, 2023
The International Conference on Energy and Green Computing (ICEGC’2023)
|
|
---|---|---|
Article Number | 00057 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/202346900057 | |
Published online | 20 December 2023 |
- P. Anbalagan et Y. H. Joo, « Dissipative-based Sampled-data Control for T-S Fuzzy Wind Turbine System Via Fragmented-delayed State Looped Functional Approach », In Review, preprint, avr. 2022. doi: 10.21203/rs.3.rs-1525158/v1. [Google Scholar]
- S. Georg et H. Schulte, « Takagi-Sugeno Sliding Mode Observer with a Weighted Switching Action and Application to Fault Diagnosis for Wind Turbines », in Intelligent Systems in Technical and Medical Diagnostics, vol. 230, J. Korbicz et M. Kowal, Éd., in Advances in Intelligent Systems and Computing, vol. 230., Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, p. 41‑52. doi: 10.1007/978-3-642-39881-0_3. [Google Scholar]
- B. Boukhezzar et H. Siguerdidjane, « Comparison between linear and nonlinear control strategies for variable speed wind turbines », Control Eng. Pract., vol. 18, no 12, p. 1357‑1368, déc. 2010, doi: 10.1016/j.conengprac.2010.06.010. [CrossRef] [Google Scholar]
- A. EL Bakri et I. Boumhidi, « Fuzzy model-based faults diagnosis of the wind turbine benchmark », Procedia Comput. Sci., vol. 127, p. 464‑470, 2018, doi: 10.1016/j.procs.2018.01.144. [CrossRef] [Google Scholar]
- S. Bougdour, R. Elhouti, S. Sefriti, et I. Boumhidi, « Optimal predictive control model of wind turbine », in 2021 Fifth International Conference On Intelligent Computing in Data Sciences (ICDS), Fez, Morocco: IEEE, oct. 2021, p. 1‑7. doi: 10.1109/ICDS53782.2021.9626757. [Google Scholar]
- D. Liu, Q. Wei, D. Wang, X. Yang, et H. Li, Adaptive Dynamic Programming with Applications in Optimal Control. in Advances in Industrial Control. Cham: Springer International Publishing, 2017. doi: 10.1007/978-3-319-50815-3. [Google Scholar]
- R. Tang, B. Luo, et Y. Liao, « Adaptive dynamic programming based composite control for profile tracking with multiple constraints », Neurocomputing, vol. 557, p. 126711, nov. 2023, doi: 10.1016/j.neucom.2023.126711. [CrossRef] [Google Scholar]
- L. Kong, S. Zhang, et X. Yu, « Approximate optimal control for an uncertain robot based on adaptive dynamic programming », Neurocomputing, vol. 423, p. 308‑317, janv. 2021, doi: 10.1016/j.neucom.2020.10.012. [CrossRef] [Google Scholar]
- G. Hu, J. Guo, J. Cieslak, Y. Ding, Z. Guo, et D. Henry, « Fault-tolerant control based on adaptive dynamic programming for reentry vehicles subjected to state-dependent actuator fault », Eng. Appl. Artif. Intell., vol. 123, p. 106450, août 2023, doi: 10.1016/j.engappai.2023.106450. [CrossRef] [Google Scholar]
- X. Li, L. Wang, Y. An, Q.-L. Huang, Y.-H. Cui, et H.-S. Hu, « Dynamic path planning of mobile robots using adaptive dynamic programming », Expert Syst. Appl., vol. 235, p. 121112, janv. 2024, doi: 10.1016/j.eswa.2023.121112. [CrossRef] [Google Scholar]
- B. Zhao, G. Shi, et D. Wang, « Asymptotically stable critic designs for approximate optimal stabilization of nonlinear systems subject to mismatched external disturbances », Neurocomputing, vol. 396, p. 201‑208, juill. 2020, doi: 10.1016/j.neucom.2018.08.092. [CrossRef] [Google Scholar]
- A. Ziaei, H. Kharrati, et A. Rahimi, « Fault-tolerant control for nonlinear offshore steel jacket platforms based on reinforcement learning », Ocean Eng., vol. 246, p. 110247, févr. 2022, doi: 10.1016/j.oceaneng.2021.110247. [CrossRef] [Google Scholar]
- B. Zhao, D. Liu, et Y. Li, « Observer based adaptive dynamic programming for fault tolerant control of a class of nonlinear systems », Inf. Sci., vol. 384, p. 21‑33, avr. 2017, doi: 10.1016/j.ins.2016.12.016. [CrossRef] [Google Scholar]
- R. Song et F. L. Lewis, « Robust optimal control for a class of nonlinear systems with unknown disturbances based on disturbance observer and policy iteration », Neurocomputing, vol. 390, p. 185‑195, mai 2020, doi: 10.1016/j.neucom.2020.01.082. [Google Scholar]
- B. Zhao, D. Liu, X. Yang, et Y. Li, « Observer-critic structure-based adaptive dynamic programming for decentralised tracking control of unknown large-scale nonlinear systems », Int. J. Syst. Sci., vol. 48, no 9, p. 1978‑1989, juill. 2017, doi: 10.1080/00207721.2017.1296982. [CrossRef] [Google Scholar]
- S. Georg, H. Schulte, et H. Aschemann, « Control-oriented modelling of wind turbines using a Takagi-Sugeno model structure », in 2012 IEEE International Conference on Fuzzy Systems, Brisbane, Australia: IEEE, juin 2012, p. 1‑8. doi: 10.1109/FUZZ-IEEE.2012.6251302. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.