Open Access
Issue
E3S Web of Conf.
Volume 469, 2023
The International Conference on Energy and Green Computing (ICEGC’2023)
Article Number 00067
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202346900067
Published online 20 December 2023
  1. G. Nicoletti, N. Arcuri, G. Nicoletti, and R. Bruno, ‘A technical and environmental comparison between hydrogen and some fossil fuels’, Energy Conversion and Management, vol. 89, pp. 205–213, Jan. 2015, doi: 10.1016/j.enconman.2014.09.057. [CrossRef] [Google Scholar]
  2. V. Arutyunov and G. Lisichkin, ‘Energy resources of XXI century: problems and forecasts. Can renewable energy sources to replace fossil fuels?’, Russian Chemical Reviews, vol. 86, Aug. 2017, doi: 10.1070/RCR4723. [Google Scholar]
  3. M. Bououdina, D. Grant, and G. Walker, ‘Review on hydrogen absorbing materials— structure, microstructure, and thermodynamic properties’, International Journal of Hydrogen Energy, vol. 31, no. 2, pp. 177–182, Feb. 2006, doi: 10.1016/j.ijhydene.2005.04.049. [CrossRef] [Google Scholar]
  4. B. Ahmed et al., ‘An Ab-initio simulation of boron-based hydride perovskites XBH3 (X = Cs and Rb) for advance hydrogen storage system’, Computational and Theoretical Chemistry, vol. 1225, p. 114173, Jul. 2023, doi: 10.1016/j.comptc.2023.114173. [CrossRef] [Google Scholar]
  5. D. Luxembourg, G. Flamant, E. Bêche, J.-L. Sans, J. Giral, and V. Goetz, ‘Hydrogen storage capacity at high pressure of raw and purified single wall carbon nanotubes produced with a solar reactor’, International Journal of Hydrogen Energy, vol. 32, no. 8, pp. 1016–1023, Jun. 2007, doi: 10.1016/j.ijhydene.2006.07.005. [CrossRef] [Google Scholar]
  6. R. Zacharia and S. ullah Rather, ‘Review of Solid State Hydrogen Storage Methods Adopting Different Kinds of Novel Materials’, Journal of Nanomaterials, vol. 2015, p. e914845, Oct. 2015, doi: 10.1155/2015/914845. [CrossRef] [Google Scholar]
  7. J. Graetz, ‘New approaches to hydrogen storage’, Chem. Soc. Rev., vol. 38, no. 1, pp. 73–82, Dec. 2008, doi: 10.1039/B718842K. [Google Scholar]
  8. I. P. Jain, C. Lal, and A. Jain, ‘Hydrogen storage in Mg: A most promising material’, International Journal of Hydrogen Energy, vol. 35, no. 10, pp. 5133–5144, May 2010, doi: 10.1016/j.ijhydene.2009.08.088. [CrossRef] [Google Scholar]
  9. L. Schlapbach and A. Züttel, ‘Hydrogen-storage materials for mobile applications’, Nature, vol. 414, no. 6861, pp. 353–358, Nov. 2001, doi: 10.1038/35104634. [CrossRef] [PubMed] [Google Scholar]
  10. S. Zh. Karazhanov, A. G. Ulyashin, P. Vajeeston, and P. Ravindran, ‘Hydrides as materials for semiconductor electronics’, Philosophical Magazine, vol. 88, no. 16, pp. 2461–2476, Jun. 2008, doi: 10.1080/14786430802360362. [CrossRef] [Google Scholar]
  11. E. Yu and Y. Pan, ‘Exploring the hydrogen evolution catalytic activity of the orthorhombic and hexagonal borophene as the hydrogen storage material’, Electrochimica Acta, vol. 435, p. 141391, Dec. 2022, doi: 10.1016/j.electacta.2022.141391. [CrossRef] [Google Scholar]
  12. A. Swarnkar, V. Ravi, and A. Nag, ‘Beyond Colloidal Cesium Lead Halide Perovskite Nanocrystals: Analogous Metal Halides and Doping’, ACS Energy Letters, vol. 2, pp. 1089–1098, Apr. 2017, doi: 10.1021/acsenergylett.7b00191. [CrossRef] [Google Scholar]
  13. C. J. Bartel et al., ‘New tolerance factor to predict the stability of perovskite oxides and halides’, Sci Adv, vol. 5, no. 2, p. eaav0693, Feb. 2019, doi: 10.1126/sciadv.aav0693. [CrossRef] [PubMed] [Google Scholar]
  14. T. Gholami and M. Salavati-Niasari, ‘Effects of copper:aluminum ratio in CuO/Al2O3 nanocomposite: Electrochemical hydrogen storage capacity, band gap and morphology’, International Journal of Hydrogen Energy, vol. 41, no. 34, pp. 15141– 15148, Sep. 2016, doi: 10.1016/j.ijhydene.2016.06.191. [CrossRef] [Google Scholar]
  15. M. H. Benkabou et al., ‘Structural, electronic, optical and thermodynamic investigations of NaXF3 (X = Ca and Sr): First-principles calculations’, Chinese Journal of Physics, vol. 56, no. 1, pp. 131–144, Feb. 2018, doi: 10.1016/j.cjph.2017.12.008. [CrossRef] [Google Scholar]
  16. L. Hasni et al., ‘First-principles Calculations of Structural, Magnetic Electronic and Optical Properties of Rare-earth Metals TbX (X=N, O, S, Se)’, J Supercond Nov Magn, vol. 30, no. 12, pp. 3471–3479, Dec. 2017, doi: 10.1007/s10948-017-4130-5. [CrossRef] [Google Scholar]
  17. J. P. Perdew, K. Burke, and M. Ernzerhof, ‘Generalized Gradient Approximation Made Simple’, Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, Oct. 1996, doi: 10.1103/PhysRevLett.77.3865. [CrossRef] [PubMed] [Google Scholar]
  18. V. G. Tyuterev and N. Vast, ‘Murnaghan’s equation of state for the electronic ground state energy’, Computational Materials Science, vol. 38, no. 2, pp. 350–353, Dec. 2006, doi: 10.1016/j.commatsci.2005.08.012. [CrossRef] [Google Scholar]
  19. K. Xiong, J. Robertson, and S. J. Clark, ‘Defect states in the high-dielectric-constant gate oxide LaAlO3’, Applied Physics Letters, vol. 89, no. 2, p. 022907, Jul. 2006, doi: 10.1063/1.2221521. [CrossRef] [Google Scholar]
  20. D. Guendouz et al., ‘Electronic structure, optical and thermodynamic properties of ternary hydrides M BeH 3 ( M = Li, Na, and K)’, Can. J. Phys., vol. 94, no. 9, pp. 865–876, Sep. 2016, doi: 10.1139/cjp-2016-0299. [CrossRef] [Google Scholar]
  21. M. A. Ghebouli, B. Ghebouli, A. Bouhemadou, M. Fatmi, and S. Bin-Omran, ‘Structural, elastic, electronic, optical and thermodynamic properties of KMgH3’, Solid State Sciences, vol. 13, no. 3, pp. 647–652, Mar. 2011, doi: 10.1016/j.solidstatesciences.2010.11.046. [CrossRef] [Google Scholar]
  22. P. Sharma and S. C. Katyal, ‘Determination of optical parameters ofa-(As2Se3)90Ge10thin film’, Journal of Physics D: Applied Physics, vol. 40, no. 7, p. 2115, 2007. [CrossRef] [Google Scholar]
  23. H. H. Raza, G. Murtaza, Umm-e-Hani, N. Muhammad, and S. M. Ramay, ‘First-principle investigation of XSrH3 (X = K and Rb) perovskite-type hydrides for hydrogen storage’, International Journal of Quantum Chemistry, vol. 120, no. 24, p. e26419, 2020, doi: 10.1002/qua.26419. [CrossRef] [Google Scholar]
  24. S. V. Alapati, J. K. Johnson, and D. S. Sholl, ‘Identification of Destabilized Metal Hydrides for Hydrogen Storage Using First Principles Calculations’, J. Phys. Chem. B, vol. 110, no. 17, pp. 8769–8776, May 2006, doi: 10.1021/jp060482m. [CrossRef] [PubMed] [Google Scholar]
  25. C. Kurkcu, S. Al, and Ç. Yamçıçıer, ‘Investigation of mechanical properties of KCaH3 and KSrH3 orthorhombic perovskite hydrides under high pressure for hydrogen storage applications’, The European Physical Journal B, vol. 95, p. 180, Nov. 2022, doi: 10.1140/epjb/s10051-022-00446-2. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.