Open Access
Issue
E3S Web of Conf.
Volume 469, 2023
The International Conference on Energy and Green Computing (ICEGC’2023)
Article Number 00068
Number of page(s) 13
DOI https://doi.org/10.1051/e3sconf/202346900068
Published online 20 December 2023
  1. Akkerman QA, Manna L. What Defines a Halide Perovskite? ACS Energy Lett 2020;5:604–10. https://doi.org/10.1021/acsenergylett.0c00039. [CrossRef] [PubMed] [Google Scholar]
  2. Roy P, Kumar Sinha N, Tiwari S, Khare A. A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status. Solar Energy 2020;198:665–88. https://doi.org/10.1016/j.solener.2020.01.080. [CrossRef] [Google Scholar]
  3. Moulaoui L, Bajjou O, Najim A, Rahmani K. The study of electronic and optical properties of perovskites CH3NH3PbCl3 and CH3NH3PbBr3 using first-principle. E3S Web Conf 2022;336:00015. https://doi.org/10.1051/e3sconf/202233600015. [CrossRef] [EDP Sciences] [Google Scholar]
  4. Best Research-Cell Efficiency Chart n.d. https://www.nrel.gov/pv/cell-efficiency.html (accessed June 17, 2023). [Google Scholar]
  5. Chabri I, Oubelkacem A, Benhouria Y. Numerical development of lead-free Cs2TiI6-based perovskite solar cell via SCAPS-1D. E3S Web Conf 2022;336:00050. https://doi.org/10.1051/e3sconf/202233600050. [CrossRef] [EDP Sciences] [Google Scholar]
  6. Hoefler SF, Trimmel G, Rath T. Progress on lead-free metal halide perovskites for photovoltaic applications: a review. Monatsh Chem 2017;148:795–826. https://doi.org/10.1007/s00706-017-1933-9. [CrossRef] [PubMed] [Google Scholar]
  7. Pascual J, Nasti G, Aldamasy MH, Smith JA, Flatken M, Phung N, et al. Origin of Sn(II) oxidation in tin halide perovskites. Mater Adv 2020;1:1066–70. https://doi.org/10.1039/D0MA00245C. [CrossRef] [Google Scholar]
  8. Krishnamoorthy T, Ding H, Yan C, Leong WL, Baikie T, Zhang Z, et al. Lead-free germanium iodide perovskite materials for photovoltaic applications. J Mater Chem A 2015;3:23829–32. https://doi.org/10.1039/C5TA05741H. [CrossRef] [Google Scholar]
  9. Wang H, Tal A, Bischoff T, Gono P, Pasquarello A. Accurate and efficient band-gap predictions for metal halide perovskites at finite temperature. Npj Comput Mater 2022;8:1–13. https://doi.org/10.1038/s41524-022-00869-6. [CrossRef] [Google Scholar]
  10. Kang C-J, Kotliar G. Material design of indium-based compounds: Possible candidates for charge, valence, and bond disproportionation and superconductivity. Phys Rev Mater 2019;3:015001. https://doi.org/10.1103/PhysRevMaterials.3.015001. [CrossRef] [Google Scholar]
  11. Amine Ghebouli M, Ghebouli B, Chihi T, Fatmi M, Ahmed SI. Predicted structural, elastic, electronic and optical properties of inorganic complex chloride and bromide CsInCl3 and CsInBr3. Materials Science in Semiconductor Processing 2021;135:106033. https://doi.org/10.1016/j.mssp.2021.106033. [CrossRef] [Google Scholar]
  12. Blaha P, Schwarz K, Tran F, Laskowski R, Madsen GKH, Marks LD. WIEN2k: An APW+lo program for calculating the properties of solids. The Journal of Chemical Physics 2020;152:074101. https://doi.org/10.1063/1.5143061. [CrossRef] [PubMed] [Google Scholar]
  13. Blaha P, Schwarz K, Sorantin P, Trickey SB. Full-potential, linearized augmented plane wave programs for crystalline systems. Computer Physics Communications 1990;59:399–415. https://doi.org/10.1016/0010-4655(90)90187-6. [CrossRef] [Google Scholar]
  14. Sham LJ, Schlüter M. Density-Functional Theory of the Energy Gap. Phys Rev Lett 1983;51:1888–91. https://doi.org/10.1103/PhysRevLett.51.1888. [CrossRef] [Google Scholar]
  15. Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys Rev Lett 1996;77:3865–8. https://doi.org/10.1103/PhysRevLett.77.3865. [CrossRef] [Google Scholar]
  16. Tang L-C, Chang Y-C, Huang J-Y, Lee M-H, Chang C-S. First Principles Calculations of Linear and Second-Order Optical Responses in Rhombohedrally Distorted Perovskite Ternary Halides, CsGeX3 (X = Cl, Br, and I). Jpn J Appl Phys 2009;48:112402. https://doi.org/10.1143/JJAP.48.112402. [CrossRef] [Google Scholar]
  17. Alqahtani SM, Alsayoud AQ, Alharbi FH. Structures, band gaps, and formation energies of highly stable phases of inorganic ABX3 halides: A = Li, Na, K, Rb, Cs, Tl; B = Be, Mg, Ca, Ge, Sr, Sn, Pb; and X = F, Cl, Br, I. RSC Adv 2023;13:9026–32. https://doi.org/10.1039/D3RA00185G. [CrossRef] [PubMed] [Google Scholar]
  18. Mouhat F, Coudert F-X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B 2014;90:224104. https://doi.org/10.1103/PhysRevB.90.224104. [CrossRef] [Google Scholar]
  19. Ambrosch-Draxl C, Sofo JO. Linear optical properties of solids within the full-potential linearized augmented planewave method. Computer Physics Communications 2006;175:1–14. https://doi.org/10.1016/j.cpc.2006.03.005. [CrossRef] [Google Scholar]
  20. Wang G-Z, Chen H, Luo X-K, Yuan H-K, Kuang A-L. Bandgap engineering of SrTiO3/NaTaO3 heterojunction for visible light photocatalysis. International Journal of Quantum Chemistry 2017;117:e25424. https://doi.org/10.1002/qua.25424. [CrossRef] [Google Scholar]
  21. Bartolotti LJ. Absolute electronegativities as determined from Kohn-Sham theory. In: Sen KD, Jørgensen CK, editors. Electronegativity, vol. 66, Berlin, Heidelberg: Springer; 1987, p. 27–40. https://doi.org/10.1007/BFb0029835. [CrossRef] [Google Scholar]
  22. Travis W, Glover ENK, Bronstein H, Scanlon DO, Palgrave RG. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chem Sci 2016;7:4548–56. https://doi.org/10.1039/C5SC04845A. [CrossRef] [PubMed] [Google Scholar]
  23. Ali MA, Wahab A, Gulana, Murtaza G, Khan A. First principles calculations for structural, elastic, mechanical, electronic and optical properties of CsYbCl3. Mater Res Express 2019;6:065905. https://doi.org/10.1088/2053-1591/ab0bb2. [CrossRef] [Google Scholar]
  24. Molla MR, Saiduzzaman M, Asif TI, Dujana WA, Hossain KM. Electronic phase transition from semiconducting to metallic in cubic halide CsYbCl3 perovskite under hydrostatic pressure. Physica B: Condensed Matter 2022;630:413650. https://doi.org/10.1016/j.physb.2021.413650. [CrossRef] [Google Scholar]
  25. Rühle S. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Solar Energy 2016;130:139–47. https://doi.org/10.1016/j.solener.2016.02.015. [CrossRef] [Google Scholar]
  26. Bentour H, Belasfar K, Boujnah M, El Yadari M, Benyoussef A, El Kenz A. DFT study of Se/Mn and Te/Mn codoped SrTiO3 for visible light-driven photocatlytic hydrogen production. Optical Materials 2022;129:112431. https://doi.org/10.1016/j.optmat.2022.112431. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.