Open Access
Issue
E3S Web of Conf.
Volume 469, 2023
The International Conference on Energy and Green Computing (ICEGC’2023)
Article Number 00088
Number of page(s) 7
DOI https://doi.org/10.1051/e3sconf/202346900088
Published online 20 December 2023
  1. A. K. Rathore and A. K. Verma, Advanced Concepts and Technologies for Electric Vehicles. CRC Press, 2023. [CrossRef] [Google Scholar]
  2. F. M. N. U. Khan, M. G. Rasul, A. S. M. Sayem, and N. K. Mandal, “Design and optimization of lithium-ion battery as an efficient energy storage device for electric vehicles: A comprehensive review,” Journal of Energy Storage, vol. 71, p. 108033, Nov. 2023, doi: 10.1016/j.est.2023.108033. [CrossRef] [Google Scholar]
  3. A. M. Çolak and E. Irmak, “Electric Vehicle Advancements, Barriers, and Potential: A Comprehensive Review,” Electric Power Components and Systems, vol. 51, no. 17, pp. 2010–2042, Oct. 2023, doi: 10.1080/15325008.2023.2239238. [CrossRef] [Google Scholar]
  4. M. Putzig, J. Bennett, A. Brown, S. Lommele, and K. Bopp, “Electric Vehicle Basics,” National Renewable Energy Lab. (NREL), Golden, CO (United States), NREL/FS-5400-80605, Aug. 2021. Accessed: Oct. 31, 2023. [Online]. Available: https://www.osti.gov/biblio/1815396 [Google Scholar]
  5. S. Pardhi, M. E. Baghdadi, O. Hulsebos, and O. Hegazy, “Integrated multi-objective energy management of a long-haul plug-in hybrid electric coach,” 2023. [Google Scholar]
  6. R. Gautam, J. K. Nayak, N. V. Ress, R. Steinberger-Wilckens, and U. K. Ghosh, “Bio-hydrogen production through microbial electrolysis cell: Structural components and influencing factors,” Chemical Engineering Journal, vol. 455, p. 140535, Jan. 2023, doi: 10.1016/j.cej.2022.140535. [CrossRef] [Google Scholar]
  7. R. Sharma et al., “Solar-driven polymer electrolyte membrane fuel cell for photovoltaic hydrogen production,” International Journal of Hydrogen Energy, Jan. 2023, doi: 10.1016/j.ijhydene.2022.12.175. [Google Scholar]
  8. D. Tang et al., “State-of-the-art hydrogen generation techniques and storage methods: A critical review,” Journal of Energy Storage, vol. 64, p. 107196, Aug. 2023, doi: 10.1016/j.est.2023.107196. [CrossRef] [Google Scholar]
  9. P. Mendrela, W. Stanek, and T. Simla, “Sustainability assessment of hydrogen production based on nuclear energy,” International Journal of Hydrogen Energy, Aug. 2023, doi: 10.1016/j.ijhydene.2023.07.156. [Google Scholar]
  10. P. Vargas-Ferrer, E. Álvarez-Miranda, C. Tenreiro, and F. Jalil-Vega, “Integration of high levels of electrolytic hydrogen production: Impact on power systems planning,” Journal of Cleaner Production, vol. 409, p. 137110, Jul. 2023, doi: 10.1016/j.jclepro.2023.137110. [CrossRef] [Google Scholar]
  11. M. Temiz and I. Dincer, “Design and assessment of a solar energy based integrated system with hydrogen production and storage for sustainable buildings,” International Journal of Hydrogen Energy, vol. 48, no. 42, pp. 15817–15830, May 2023, doi: 10.1016/j.ijhydene.2023.01.082. [CrossRef] [Google Scholar]
  12. F. Sorgulu and I. Dincer, “Development and performance assessment of a calcium-iron bromide cycle-based hydrogen production integrated system,” Energy Conversion and Management, vol. 277, p. 116660, Feb. 2023, doi: 10.1016/j.enconman.2023.116660. [CrossRef] [Google Scholar]
  13. F. Rerhrhaye et al., “Realization and Supervision of an Intelligent Energy Distribution System with a New Combination Topology of Fuzzy and PID controllers,” International Journal on Engineering Applications (IREA), vol. 11, no. 3, Art. no. 3, May 2023, doi: 10.15866/irea.v11i3.22838. [Google Scholar]
  14. F. Sorgulu and I. Dincer, “Development of an integrated thermochemical cycle-based hydrogen production and effective utilization,” International Journal of Hydrogen Energy, vol. 48, no. 71, pp. 27502–27512, Aug. 2023, doi: 10.1016/j.ijhydene.2023.03.407. [CrossRef] [Google Scholar]
  15. M. G. Gado and H. Hassan, “Potential of prospective plans in MENA countries for green hydrogen generation driven by solar and wind power sources,” Solar Energy, vol. 263, p. 111942, Oct. 2023, doi: 10.1016/j.solener.2023.111942. [CrossRef] [Google Scholar]
  16. E. M. Barhoumi et al., “Techno-economic optimization of wind energy based hydrogen refueling station case study Salalah city Oman,” International Journal of Hydrogen Energy, vol. 48, no. 26, pp. 9529–9539, Mar. 2023, doi: 10.1016/j.ijhydene.2022.12.148. [CrossRef] [Google Scholar]
  17. Q. Hassan, V. S. Tabar, A. Z. Sameen, H. M. Salman, and M. Jaszczur, “A review of green hydrogen production based on solar energy; techniques and methods,” Energy Harvesting and Systems, Feb. 2023, doi: 10.1515/ehs-2022-0134. [Google Scholar]
  18. F. Rerhrhaye et al., “IoT-Based Data Logger for solar systems applications,” in ITM Web of Conferences, M. Sbihi, A. Mounadi, and M. Garoum, Eds., 2022, p. 01003. doi: 10.1051/itmconf/20224601003. [Google Scholar]
  19. D. Xu, L. Dong, and J. Ren, “Chapter 2 - Introduction of hydrogen routines,” in Hydrogen Economy (Second Edition), A. Scipioni, A. Manzardo, and J. Ren, Eds., Academic Press, 2023, pp. 45–65. doi: 10.1016/B978-0-323-99514-6.00019-4. [CrossRef] [Google Scholar]
  20. P. K. Panda, B. Sahoo, and S. Ramakrishna, “Hydrogen Production, Purification, Storage, Transportation, and Their Applications: A Review,” Energy Technology, vol. 11, no. 7, p. 2201434, 2023, doi: 10.1002/ente.202201434. [Google Scholar]
  21. L. Liu, R. Zhai, and Y. Hu, “Performance evaluation of wind-solar-hydrogen system for renewable energy generation and green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic,” Energy, vol. 276, p. 127386, Aug. 2023, doi: 10.1016/j.energy.2023.127386. [CrossRef] [Google Scholar]
  22. A. Kakavand, S. Sayadi, G. Tsatsaronis, and A. Behbahaninia, “Techno-economic assessment of green hydrogen and ammonia production from wind and solar energy in Iran,” International Journal of Hydrogen Energy, vol. 48, no. 38, pp. 14170–14191, May 2023, doi: 10.1016/j.ijhydene.2022.12.285. [CrossRef] [Google Scholar]
  23. M. Al-Saidi, “White knight or partner of choice? The Ukraine war and the role of the Middle East in the energy security of Europe,” Energy Strategy Reviews, vol. 49, p. 101116, Sep. 2023, doi: 10.1016/j.esr.2023.101116. [CrossRef] [Google Scholar]
  24. F. Rerhrhaye, I. Lahlouh, Y. Ennaciri, C. Benzazah, A. E. Akkary, and N. Sefiani, “New Solar MPPT Control Technique Based on Incremental Conductance and Multi-Objective Ant Colony Optimization,” IREACO, vol. 15, no. 3, p. 113, May 2022, doi: 10.15866/ireaco.v15i3.22076. [CrossRef] [Google Scholar]
  25. Q. Wang, H. Wang, and H. Pan, “A constrained-time-based algorithm for vehicle maintain prediction,” in 5th International Conference on Information Science, Electrical, and Automation Engineering (ISEAE 2023), T. Lei, Ed., Wuhan, China: SPIE, Aug. 2023, p. 166. doi: 10.1117/12.2689850. [Google Scholar]
  26. X. Zhang, “Multi-functional converter for three-phase motor drives : Modeling, analysis and fault-tolerant control,” phdthesis, Université de Lyon, 2022. Accessed: Sep. 12, 2022. [Online]. Available: https://tel.archives-ouvertes.fr/tel-03709325 [Google Scholar]
  27. Muldi Yuhendri, Mochamad Ashari, and Mauridhi Hery Purnomo, “A Novel Sensorless MPPT for Wind Turbine Generators Using Very Sparse Matrix Converter Based on Hybrid Intelligent Control,” vol. Vol 10, No 2 (2015), doi: https://doi.org/10.15866/iree.v10i2.2980. [Google Scholar]
  28. A. Martinez, D. Abbes, and G. Champenois, “Eco-design optimisation of an autonomous hybrid wind–photovoltaic system with battery storage,” IET Renewable Power Generation, vol. 6, no. 5, Art. no. 5, Sep. 2012, doi: 10.1049/iet-rpg.2011.0204. [Google Scholar]
  29. C. Zou, L. Zhang, X. Hu, Z. Wang, T. Wik, and M. Pecht, “A review of fractional-order techniques applied to lithium-ion batteries, lead-acid batteries, and supercapacitors,” Journal of Power Sources, vol. 390, pp. 286–296, Jun. 2018, doi: 10.1016/j.jpowsour.2018.04.033. [CrossRef] [Google Scholar]
  30. A. Parikh, M. Shah, and M. Prajapati, “Fuelling the sustainable future: a comparative analysis between battery electrical vehicles (BEV) and fuel cell electrical vehicles (FCEV),” Environ Sci Pollut Res, vol. 30, no. 20, pp. 57236–57252, Apr. 2023, doi: 10.1007/s11356-023-26241-9. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.