Open Access
Issue |
E3S Web of Conf.
Volume 469, 2023
The International Conference on Energy and Green Computing (ICEGC’2023)
|
|
---|---|---|
Article Number | 00089 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/e3sconf/202346900089 | |
Published online | 20 December 2023 |
- Jancarle L. Dos Santos, Fernando L. M. Antunes and Anis Chehab, “A Maximum Power Point Tracker for PV Systems Using a High-Performance Boost Converter”, Solar Energy, Issue 7, Vol. 80, pp. 772-778,2005. [Google Scholar]
- Ting-Chung Yu and Tang-Shiuan Chien, “Analysis and Simulation of Characteristics and Maximum Power Point Tracking for Photovoltaic Systems”, Proceedings of Power Electronics and Drive Systems Conference, pp. 1339 - 1344, Taipei,2009. [Google Scholar]
- Roberto Faranda, Sonia Leva, “Energy Comparison of MPPT techniques for PV Systems”, Wseas Transactions on Power System, Issue 6,Vol. 3, pp. 446-455, June 2008. [Google Scholar]
- D. P. Hohm and M. E. Ropp, “Comparative Study of Maximum Power Point Tracking Algorithms using an experimental, programmable, maximum power point tracking test bed”, Proceedings of Photovoltaic Specialists Conference, pp. 1699 - 1702,USA,2000. [Google Scholar]
- Abdessalem AK, Massoud AM, Ahmed S, et al. (2011) High performance adaptive perturb and observe MPPT technique for photovoltaic based microgrids. IEEE Transactions on Power Electronics 26(4): 1010–1021. [CrossRef] [Google Scholar]
- De Brito MAG, Galotto L, Sampaio LP, et al. (2013) Evaluation of the main MPPT techniques of photovoltaic applications. IEEE Transactions on Industrial Electronics 60(3): 1156–1167 [Google Scholar]
- Lyden S and Haque ME (2015) Maximum power point tracking techniques for photovoltaic systems: a comprehensive review and comparative analysis. Renewable and Sustainable Energy Reviews 52: 1504–1518 [CrossRef] [Google Scholar]
- Subudhi B and Pradhan R (2012) A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE Transactions on Sustainable Energy 4(1): 89–98 [Google Scholar]
- Liu F, Duan S, Liu F, et al. (2008) A variable step size INC MPPT method for PV systems. IEEE Transactions on Industrial Electronics 55(7): 2622–2628. [Google Scholar]
- Sera D, Mathe I, Kerekes T, et al. (2013) On the perturb-and-observe and incremental conductance MPPT methods for PV systems. IEEE Journal of Photovoltaics 3(3): 1070– 1078 [CrossRef] [Google Scholar]
- Vahid JF, Sheikholeslam F and Mohammad RJM (2018) Maximum power point tracking with constraint feedback linearization controller and modified incremental conductance algorithm. Transactions of the Institute of Measurement and Control 40(7): 2322-2331 [CrossRef] [Google Scholar]
- Mohammed ASM, Hooman D and Ewald FF (2002) Theoretical and experimental analyses of photovoltaic systems with voltage-and current-based maximum power-point tracking. IEEE Transactions on Energy Conversion 17(4): 514–522 [CrossRef] [Google Scholar]
- Chiu CS (2010) T-S fuzzy maximum power tracking control of solar power generation systems. IEEE Trans Energy Convers 25:1123– 1132 [CrossRef] [Google Scholar]
- Chiu CS, Ouyang YL (2011) Robust maximum power tracking control of uncertain photovoltaic systems: a unified T-S fuzzy model based approach. IEEE Trans Control Syst Technol 19:1516– 1526 [CrossRef] [Google Scholar]
- Salah CB, Ouali M (2011) Comparison of fuzzy logic and neural network in maximum power point tracker for PV systems. Electric Power Syst Res 81:43–50 [CrossRef] [Google Scholar]
- Dahmane M, Bosche J, El-Hajjaji A, Davarifar M (2013) T-S Implementation of an MPPT Algorithm for Photovoltaic Conversion System Using Poles Placement and H∞ Performances. In: Proceedings of the 3rd international conference on systems and control, Oct 29–31 [Google Scholar]
- Nabulsi A A, Dhaouadi R (2012) Efficiency optimization of a DSP-based standalone PV system using fuzzy logic and dual-MPPT control. IEEE Trans Ind Inform 8:573–584 [CrossRef] [Google Scholar]
- Cao YY and Lin Z (2003b) Robust stability analysis and fuzzy scheduling control for nonlinear systems subject to actuator saturation. IEEE Transactions on Fuzzy Systems 11(1): 57-67 [Google Scholar]
- Henrion D (1999) Stabilité des systèmes linéaires incertains à commande contrainte. PhD Thesis, Institut National des Sciences Appliquées de Toulouse, France [Google Scholar]
- Tanaka, K.; Wang, H. O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001) [Google Scholar]
- Gahinet, P.; Nemirovski, A.; Laub, A.J.; Chilali, M.: LMI Control Toolbox. MathWorks, Natick (1995) [Google Scholar]
- Ounnas, D.; Ramdani, M.; Chenikher, S.; Bouktir, T.: An Efficient Maximum Power Point Tracking Controller for Photovoltaic Systems Using Takagi-Sugeno Fuzzy Models. Arb J Sci Eng (2017) [Google Scholar]
- Ohtake, H.; Tanaka, K.; Wang, H.: Fuzzy modeling via sector nonlinearity concept. Integr. Comput. Aided Eng. 10(4), 333–341(2003) [CrossRef] [Google Scholar]
- X.-H. Chang, L. Zhang and J. H. Park : Robust static output feedback H∞ control for uncertain fuzzy systems, Fuzzy Sets and Systems (2014), http://dx.doi.org/10.1016/j.fss.2014.10.023 [Google Scholar]
- S. Kririm, B. Boukili, A. El-Amrani and A. Hmamed : H∞ Analysis For Descriptor Systems : A Strict LMI Approach, 2020 1st Int. Conf. on Innovative Research in Applied Science, Engineering and Technology (IRASET), Meknes, Morocco, March 19-20, 2020. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.