Open Access
Issue
E3S Web Conf.
Volume 470, 2023
IVth International Conference “Energy Systems Research” (ESR-2023)
Article Number 01008
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202347001008
Published online 21 December 2023
  1. G. Smith, Numerical solution of partial differential equations: finite difference methods. Oxford university press, p. 321, 2004. [Google Scholar]
  2. S. Kazem, D. Mehdi. “Application of finite difference method of lines on the heat equation.” Numerical Methods for Partial Differential Equations 34.2: pp. 626-660, (2018). [CrossRef] [Google Scholar]
  3. S. Patankar, D. Spalding, Heat and mass transfer in boundary layers. MorganGrampian, 1968. [Google Scholar]
  4. R. Eymard, Th. Gallouët, R. Herbin, Finite volume methods, volume 7 of Handbook of Numerical Analysis. Elsevier, 2000. [Google Scholar]
  5. J. Zhu, O. Zienkiewicz, R. Taylor, The finite element method: its basis and fundamentals. Elsevier, 2005. [Google Scholar]
  6. C. Johnson, Numerical solution of partial differential equations by the finite element method. Courier Corporation, 2012. [Google Scholar]
  7. A. Kler, D. Apanovich, A. Maximov, An effective method for calculating the elements of thermal power plants, which are reduced to solving systems of partial differential equations, E3S Web of Conferences, 2020, 209. P. 03029. DOI: 10.1051/e3sconf/202020903029. [CrossRef] [EDP Sciences] [Google Scholar]
  8. A.M. Kler, D.V. Apanovich, The method of dynamic calculations of elements of thermal power plants, which reduces the solution of systems of differential equations in partial derivatives to the solution of linear programming problems, Information and mathematical technologies in science and management, 2022, 3(27), pp. 148-161. DOI:10.38028/ESI.2022.27.3.014. [Google Scholar]
  9. A.M. Kler, D.V. Apanovich, Numerical simulation of the water hammer phenomenon taking into account the hydraulic friction of the pipeline by the control point method, Analysis and Data Processing Systems, 2022, 3 (7), pp. 59-74. DOI: 10.17212/2782-2001-2022-3-59-74. [CrossRef] [Google Scholar]
  10. N.K. Karmarkar, A new polynomial-time algorithm for linear programming, combinatorica, 4, 373-395 (1984) DOI: 10.1007/BF02579150 [Google Scholar]
  11. I. I. Dikin, Iterative solution of problems of linear and quadratic programming, Dokl. Akad. Nauk SSSR, 174:4, 747–748 (1967) [Google Scholar]
  12. A.V. Fiacco, G.P. Mc Cormick, Nonlinear programming: sequential uncon-strained minimization techniques. John Wiley, New York. (1968) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.