Issue |
E3S Web Conf.
Volume 209, 2020
ENERGY-21 – Sustainable Development & Smart Management
|
|
---|---|---|
Article Number | 03029 | |
Number of page(s) | 7 | |
Section | Session 2. Advanced Energy Technologies: Clean, Resource-Saving, and Renewable Energy | |
DOI | https://doi.org/10.1051/e3sconf/202020903029 | |
Published online | 23 November 2020 |
An effective method for calculating the elements of thermal power plants, which are reduced to solving systems of partial differential equations
Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences, ESI SB RAS, Irkutsk, Russia
* Corresponding author: dvapan@gmail.com
Calculations of dynamic processes in the elements of thermal power plants (TPP) (heat exchangers, combustion chambers, turbomachines, etc.) are necessary to justify permissible and optimal operating modes, the choice of design characteristics elements, assessing their reliability, etc. Such tasks are reduced to solving partial differential equations. At present time for such calculations are mainly used finite-difference method and finite element method. These methods are cumbersome and complex. The article proposes a method, the main idea of which is to reduce the solution of equations to solving linear programming problems (LP) is demonstrated by the example heat exchanger of periodic action. The mathematical description includes the following energy balance equations for gas and ceramics, respectively, on the plane, where - indicates the length of the heat exchanger, and - the operating time. Also provides a more complex model, taking into account the spread of heat inside the balls of the ceramic backfill.
© The Authors, published by EDP Sciences, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.