Open Access
E3S Web Conf.
Volume 376, 2023
International Scientific and Practical Conference “Environmental Risks and Safety in Mechanical Engineering” (ERSME-2023)
Article Number 04034
Number of page(s) 18
Section IV Environmental Impact of Transport Logistics
Published online 31 March 2023
  1. S. Darvishpoor, J. Roshanian, A. Raissi, M. Hassanalian, Aerosp. Sci., 121, 100694 (2021) [Google Scholar]
  2. M. Hassanalian, D. Rice, A. Abdelkefi, Aerosp. Sci. 97, 61–105 (2018) [Google Scholar]
  3. M. Hassanalian, A. Abdelkefi, Aerosp. Sci. 91, 99–131 (2017) [Google Scholar]
  4. J. Shahmoradi, E. Talebi, P. Roghanchi, M.A. Hassanalian, Drones 4, 34 (2020) [CrossRef] [Google Scholar]
  5. J. Shahmoradi, P. Roghanchi, M. Hassanalian, Int. J. Theor. Appl. Multiscale Mech. 4, 58–82 (2022) [CrossRef] [Google Scholar]
  6. A. Mirzaeinia, J. Shahmoradi, P. Roghanchi, M. Hassanalian, Autonomous Routing and Power Management of Drones in GPS-Denied Environments through Dijkstra Algorithm. In Proceedings of the 2019 AIAA Propulsion and Energy Conference (Indianapolis, Indiana, 2019) [Google Scholar]
  7. J. Shahmoradi, A. Mirzaeinia, M. Hassanalian, P. Roghanchi, Monitoring of Inaccessible Areas in GPS-Denied Underground Mines Using a Fully Autonomous Encased Safety Inspection Drone. In Proceedings of the AIAA SciTech 2020 (Orlando, FL, USA, 2020) [Google Scholar]
  8. S. Lanctot, J. Cooke, J. Montoya, B. Herkenhoff, A. Mostafanejad, M.A. Hassanalian, Hybrid Vehicle System for Depositing Payloads in Extreme Environments Like Antarctica and Arctic. In Proceedings of the AIAA Propulsion and Energy 2021 Forum (Virtual Event, 2021) [Google Scholar]
  9. A.H. Louie, Axiomathes 20, 495–509 (2010) [CrossRef] [Google Scholar]
  10. P. Borges, T. Peynot, S. Liang, et al., Field Robot 2, 1567–1627 (2022) [CrossRef] [Google Scholar]
  11. S. Lanctot, B. Herkenhoff, M. Hassanalian, Unmanned Launching & Landing Rover (ULLR) for Moon and Martian Missions on Ice-Caps. In Proceedings of the 2021 ASCEND Conference (Las Vegas, NV, USA, 2021) [Google Scholar]
  12. T.S. John, Int. J. Sci. Eng. Res. 2, 1–6 (2011) [Google Scholar]
  13. M. Ben-Ari, F. Mondada, Robotic motion and odometry. In Elements of Robotics; Springer (Cham, Switzerland, 2018) [Google Scholar]
  14. J. Ni, J. Hu, C. Xiang, J. Automob. Eng. 235, 1084–1100 (2021) [CrossRef] [Google Scholar]
  15. Clearpath Robotics: Mobile Robots for Research & Development. Available online: (accessed on 30 December 2022). [Google Scholar]
  16. N.A. Olmedo, M. Barczyk, H. Zhang, et al., J. Unmanned Veh. Syst. 8, 364–381 (2020) [CrossRef] [Google Scholar]
  17. P. Gonzalez-De-Santos, R. Fernández, D. Sepúlveda, E. Navas, M. Armada, Unmanned ground vehicles for smart farms. In Agronomy-Climate Change and Food Security; Intech UK (Horwich, UK, 2020) [Google Scholar]
  18. M.R. Blackburn, R. Bailey, B. Lytle, In Unmanned Ground Vehicle Technology VI; Society of Photo Optical: Orlando, FL, USA 5422, 124–134 (2004) [CrossRef] [Google Scholar]
  19. B. Sun, X. Jing, Robot. Biomim. 4, 1–14 (2017) [CrossRef] [Google Scholar]
  20. W. Guo, J. Qiu, X. Xu, J. Wu, Sensors 22, 1470 (2022) [CrossRef] [PubMed] [Google Scholar]
  21. B. Herkenhoff, S. Lanctot, T. Bjorkman, N. Serda, M. Hassanalian, Preliminary Design Concept of Locust Inspired Jumping Moon Robot Swarm. In Proceedings of the AIAA Propulsion and Energy 2021 Forum (Virtual Event, 2021) [Google Scholar]
  22. A. Western, R. Cervantes, C. Dunning, et al., Bioinspired Robot with Walking, Rolling, and Jumping Capabilities for Planetary Exploration. In Proceedings of the AIAA Aviation 2021 Forum (Virtual Event, 2021) [Google Scholar]
  23. B.K. Herkenhoff, S.I. Lanctot, J.M. Fisher, N. Serda, et al., In Proceedings of the Lunar and Planetary Science Conference, Online, 2754 (2021) [Google Scholar]
  24. A. Western, M. Haghshenas-Jaryani, M. Hassanalian, Acta Astronaut 204, 34–48 (2022) [Google Scholar]
  25. S. Rezazadeh, A. Abate, R.L. Hatton, J.W. Hurst, IEEE Access 6, 54369–54387 (2018) [CrossRef] [Google Scholar]
  26. E. Prada, Ľ. Miková, R. Surovec, M. Kenderová, Complex kinematic model of snakelike robot with holonomic constraints. In Proceedings of the Mezinárodní Vědecká Konference k Problematice Technologických a Inovačních Procesů Technnológia Europea (Hradec Králové, Czech Republic, 2012) [Google Scholar]
  27. A. Crespi, A. Badertscher, A. Guignard, A.J. Ijspeert, Robot. Auton. Syst. 50, 163–175 (2005) [CrossRef] [Google Scholar]
  28. CDC—Mining Contract—Snake Robot for Mine Rescue—NIOSH. Available online:–2009-30721.html (accessed on 30 December 2022). [Google Scholar]
  29. A. Menciassi, S. Gorini, G. Pernorio, L. Weiting, et al., fabrication and performances of a biomimetic robotic earthworm. In Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics (Shenyang, China, 2004) [Google Scholar]
  30. M. Carlo, S.A. Metin, J. Bionic Eng. 3, 115–125 (2006) [CrossRef] [Google Scholar]
  31. Saunders, A.; Goldman, D.I.; Full, R.J.; Buehler, M. The rise climbing robot: Body and leg design. In Proceedings of the Unmanned Systems Technology VIII, Kissimmee, FL, USA, 17–20 May 2006; pp. 401–413. [Google Scholar]
  32. Uckert, K.; Parness, A.; Chanover, N.; Eshelman, E.J.; Abcouwer, N.; Nash, J.; Detry, R.; Fuller, C.; Voelz, D.; Hull, R.; et al. Investigating habitability with an integrated rock-climbing robot and astrobiology instrument suite. Astrobiology 2020, 20, 1427– 1449. [Google Scholar]
  33. The First Climbing Robot for Mars–Sciworthy. Available online: (accessed on 30 December 2022). [Google Scholar]
  34. Lanctot, S.; Montoya, J.; Dunaway, C.; Flores, C.E.; Barstow, J.; Janney, W.; Eisenberg, S.; Good, F.; Davis, N.S.; Zhang, S.; et al. Pillbug-Inspired Robot with Crawling and Rolling Locomotion Mechanisms for Use on the Lunar Surface. In Proceedings of the AIAA SciTech 2023 Forum, National Harbor, MD, USA & Online, 23–27 January 2023. [Google Scholar]
  35. Liu, G.H.; Lin, H.Y.; Lin, H.Y.; Chen, S.T.; Lin, P.C. A bio-inspired hopping kangaroo robot with an active tail. J. Bionic Eng. 2014, 11, 541–555. [CrossRef] [Google Scholar]
  36. Yu, J.; Ding, R.; Yang, Q.; Tan, M.; Wang, W.; Zhang, J. On a bio-inspired amphibious robot capable of multimodal motion. IEEE/ASME Trans. Mechatron. 2011, 17, 847–856. [Google Scholar]
  37. Han, S. A Guide to the Different Types of Drones & UAS. Everglades University. 5 March 2021. Available online: (accessed on 1 December 2022). [Google Scholar]
  38. Carholt, O.C.; Fresk, E.; Andrikopoulos, G.; Nikolakopoulos, G. Design, modelling and control of a single rotor UAV. In Proceedings of the 2016 24th Mediterranean Conference on Control and Automation (MED), Athens, Greece, 21–24 June 2016; pp. 840–845. [Google Scholar]
  39. Darvishpoor, S.; Jafar, R.; Morteza, T. A novel concept of VTOL bi-rotor UAV based on moving mass control. Aerosp. Sci. Technol. 2020, 107, 106238. [Google Scholar]
  40. Mirkov, N.; Rasuo, B. Maneuverability of an UAV with coanda effect based lift production. In Proceedings of the 28th International Council of the Aeronautical Sciences (ICAS), Brisbane, Australia, 23–28 September 2012; pp. 1–6. [Google Scholar]
  41. Barlow, C.; Lewis, D.; Prior, S.D.; Odedra, S.; Erbil, M.A.; Karamanoglu, M.; Collins, R. Investigating the use of the Coanda Effect to create novel unmanned aerial vehicles. Microsoft Word–MES_2009_Paper_coanda effect C Barlow D Lewis ( In Proceedings of the International Conference on Manufacturing and Engineering Systems, Huwei, Taiwan, 17–19 December 2009; pp. 386–391. [Google Scholar]
  42. Lavars, N. Bizarre ‘Bicopter’ Drone Uses Two Tilting Rotors for 50-Minute Flights. Available online: (accessed on 20 December 2019). [Google Scholar]
  43. Jin, H. Tricopter vs. Quadcopter 2022: Which Is Better for You. Available online: (accessed on 27 April 2022). [Google Scholar]
  44. Yoo, D.W.; Oh, H.D.; Won, D.Y.; Tahk, M.J. Dynamic modeling and control system design for Tri-Rotor UAV. In Proceedings of the 2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics, Harbin, China, 8 June 2010; pp. 762–767. [Google Scholar]
  45. Lukow, S.; Sherman, M.; Gammill, M.; Hassanalian, M. Design and Fabrication of Electromagnetic Attachment Mechanism for a Hybrid Drone for Mars Exploration. In Proceedings of the 2021 AIAA SciTech Forum, Virtual Event, 11–15 & 19–21 January 2021. [Google Scholar]
  46. Pilot Institute. Is a Drone with More Rotors Better? Available online: (accessed on 30 December 2022). [Google Scholar]
  47. Lenski, P. Design, Construction and Operation of a Pentacopter. Master’s Thesis, Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Luleå, Sweden, March 2017. [Google Scholar]
  48. Foxtech. Blog–Foxtech Screamer Racing Pentacopter-Preorder. Available online: (accessed on 30 December 2022). [Google Scholar]
  49. Guitarbob. Dragonfly/Pentacopter Project. Available online: (accessed on 30 December 2022). [Google Scholar]
  50. RedDrone. The Red Drone. (Pentacopter Version.right-Top View). Available online: (accessed on 30 December 2022). [Google Scholar]
  51. Night Hawk, Sky Rider. King Soopers—Sky Rider Night Hawk Hexacopter Drone with Wi-Fi Camera—Blue/Black, 1 CT. Available online: (accessed on 30 December 2022). [Google Scholar]
  52. Octocopter. Spreading Wings S1000—DJI. DJI Official. Available online: (accessed on 30 December 2022). [Google Scholar]
  53. Throneberry, G.; Hassanalian, M.; Hocut, C.M.; Abdelkefi, A. Insights on the potential of vibratory actuation mechanism for enhanced performance of flapping-wing drones. Meccanica 2021, 56, 1–16. [Google Scholar]
  54. Hassanalian, M.; Abdelkefi, A. Towards Improved Hybrid Actuation Mechanisms for Flapping Wing Micro Air Vehicles: Analytical and Experimental Investigations. Drones 2019, 3, 73. [CrossRef] [Google Scholar]
  55. Throneberry, G.; Hassanalian, M.; Abdelkefi, A. Insights into Sensitivity of Wing Shape and Kinematic Parameters Relative to Aerodynamic Performance of Flapping Wing Nano Air Vehicles. Drones 2019, 3, 49. [CrossRef] [Google Scholar]
  56. Ghommem, M.; Hassanalian, M.; Al-Marzooqi, M.; Throneberry, G.; Abdelkefi, A. Sizing process, aerodynamic analysis, and experimental assessment of a biplane flapping wing nano air vehicle. Inst. Mech. Eng. Part G. J. Aerosp. Eng. 2019, 233, 0954410019852570. [Google Scholar]
  57. Hassanalian, M.; Abdelkefi, A. Methodologies for weight estimation of fixed and flapping wing micro air vehicles. Meccanica 2017, 52, 2047–2068. [CrossRef] [Google Scholar]
  58. Hassanalian, M.; Abdelkefi, A.; Wei, M.; Ziaei-Rad, S. A novel methodology for wing sizing of bio-inspired flapping wing micro air vehicles: Theory and prototype. Acta Mech. 2017, 228, 1097–1113. [CrossRef] [Google Scholar]
  59. Khan, M.M.; Gee, P.; Upshaw, J.; Hassanalian, M. Taxidermy Birds as Platform for Flapping Wing Drones: A Bioinspired Mechanism for Wildlife Monitoring. In Proceedings of the AIAA SciTech 2023 Forum, National Harbor, MD, USA & Online, 23–27 January 2023. [Google Scholar]
  60. Martinez-Ponce, J.; Urban, C.; Armanini, S.F.; Agarwal, R.K.; Hassanalian, M. Aerodynamic Analysis of V-Shaped Flight Formation of Flapping-Wing Drones: Analytical and Experimental Studies. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA & Online, 3–7 January 2022. [Google Scholar]
  61. Timirgaleeva, R.R., Kazak, A.N., Filippov, D.M., Novikova, N.I., Lankovskaya, E.K Robotics in the hospitality sector of the Russian Federation, CEUR Workshop ProceedingsVolume 2914, 2021, Pages 493-5005th International Scientific and Practical Conference ""Distance Learning Technologies"", DLT 2020 [Google Scholar]
  62. Kazak, A.N., Oleinikov, N.N., Timirgaleeva, R.R., Ryndach, M.A., Gorobets, D.V. Service robotics development trends in the Russian Federation, AIP Conference ProceedingsVolume 2402, 15 November 2021, 070020, 3rd International Conference on Advanced Technologies in Materials Science, Mechanical and Automation Engineering, MIP: Engineering-III 2021 [Google Scholar]
  63. Kazak, A.N., Oleinikov, N.N., Ryndach, M.A.,Sergeeva, E.A. Potential and development of the Russian transport industry, IOP Conference Series: Materials Science and Engineering Volume 918, Issue 1, 6 October 2020, 012235, 8th International Scientific Conference Transport of Siberia 2020. [Google Scholar]
  64. Erb, J.; Strauss, E.; Naghdi, M.; Hassanalian, M. Exploration of Venus’ Upper Atmosphere Using an Aqua and Bacteria Inspired Aerial System. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA & Online, 3–7 January 2022; p. 2581. [Google Scholar]
  65. Kawano, H. Study of path planning method for under-actuated blimp-type UAV in stochastic wind disturbance via augmented-mdp. In Proceedings of the 2011 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Budapest, Hungary, 4 July 2011; pp. 180–185. [Google Scholar]
  66. Shrestha, E.; Hrishikeshavan, V.; Benedict, M.; Yeo, D.; Chopra, I. Development of control strategies and flight testing of a twin-cyclocopter in forward flight. In Proceedings of the 70th annual national forum of the American Helicopter Society, Montreal, QC, Canada, 20 May 2014. [Google Scholar]
  67. Tank Quadcopter Drone|Uncrate. Available online: (accessed on 30 December 2022). [Google Scholar]
  68. Miniature Hybrid UAS/UGV Introduced|Unmanned Systems Technology. Available online: (accessed on 30 December 2022). [Google Scholar]
  69. Shapeshifting Pegasus Drone Both Drives and Flies, Now Has Smart Radio ( Available online: (accessed on 30 December 2022). [Google Scholar]
  70. Available online: (accessed on 30 December 2022). [Google Scholar]
  71. Kim, K.; Spieler, P.; Lupu, E.S.; Ramezani, A.; Chung, S.J. A bipedal walking robot that can fly, slackline, and skateboard. Sci. Robot. 2021, 6, eabf8136. [CrossRef] [Google Scholar]
  72. Goldman, J. Parrot MiniDrone Rolling Spider Review: Inexpensive Drone Fun for Novice Flyers. Available online: (accessed on 30 December 2022). [Google Scholar]
  73. Mining & Technology: Drones to Map Underground Areas, Save Time & Improve Safety ( Available online: (accessed on 30 December 2022). [Google Scholar]
  74. Ahmed, S.N. 3D scanning and mapping of underground mine workings using aerial drones. Phys. Can. 2018, 74, 103. [Google Scholar]
  75. Biggs, T. Disney Research Creates Drone Car That Can Climb Walls. Available online: (accessed on 30 December 2022). [Google Scholar]
  76. Panther. Advanced Tactics Panther Drone Has Completed First Aerial Package Delivery Test. Available online: (accessed on 30 December 2022). [Google Scholar]
  77. Moscaritolo, A. Airblock Drone Can Turn into a Hovercraft. Available online: (accessed on 30 December 2022). [Google Scholar]
  78. Zhao, M.; Anzai, T.; Shi, F.; Chen, X.; Okada, K.; Inaba, M. Design, modeling, and control of an aerial robot dragon: A dual-rotor-embedded multilink robot with the ability of multi-degree-of-freedom aerial transformation. IEEE Robot. Autom. Lett. 2018, 3, 1176–1183. [CrossRef] [Google Scholar]
  79. Drone Can Transform into a Tiny Car to Slide under Small Gaps|New Scientist. Available online: (accessed on 30 December 2022). [Google Scholar]
  80. Falanga, D.; Kleber, K.; Mintchev, S.; Floreano, D.; Scaramuzza, D. The foldable drone: A morphing quadrotor that can squeeze and fly. IEEE Robot. Autom. Lett. 2018, 4, 209–216. [Google Scholar]
  81. Miki, T.; Khrapchenkov, P.; Hori, K. UAV/UGV autonomous cooperation: UAV assists UGV to climb a cliff by attaching a tether. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 8041–8047. [Google Scholar]
  82. Autonomous Drone-Launching Security UGV Under Development|Unmanned Systems Technology. Available online: (accessed on 30 December 2022). [Google Scholar]
  83. Russia’s Autonomous Robot Tank Passes New Milestone (And Launches Drone Swarm). Available online: (accessed on 30 December 2022). [Google Scholar]
  84. Spot Robot Dog Expands with Arm Attachment, Teams Up With Drone, and More!— Construction Junkie. Available online: (accessed on 30 December 2022). [Google Scholar]
  85. Researchers Create Drone that Can Land on Moving Vehicle—Autoevolution. Available online: (accessed on 30 December 2022). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.