Open Access
E3S Web of Conf.
Volume 379, 2023
2023 13th International Conference on Future Environment and Energy (ICFEE 2023)
Article Number 04002
Number of page(s) 9
Section Sustainable Building Design and Building Energy Saving
Published online 06 April 2023
  1. Kabirikopaei, A., and Lau, J. (2020). Uncertainty analysis of various CO2-Based tracer-gas methods for estimating seasonal ventilation rates in classrooms with different mechanical systems. Building and Environment, 179, 107003. [CrossRef] [Google Scholar]
  2. ASHRAE Guideline 36-2021 (2021). High-Performance Sequences of Operation for HVAC Systems. [Google Scholar]
  3. Taheri, S., and Razban, A. (2021). Learning-based CO2 concentration prediction: Application to indoor air quality control using demand-controlled ventilation. Building and Environment, 205, 108164. [CrossRef] [Google Scholar]
  4. Shao, Y., Li, J., Zhou, Z., Hu, Z., Zhang, F., Cui, Y., and Chen, H. (2021). The effects of vertical farming on indoor carbon dioxide concentration and fresh air energy consumption in office buildings. Building and Environment, 195, 107766. [CrossRef] [Google Scholar]
  5. Tudiwer, D., and Korjenic, A. (2017). The effect of an Indoor Living Wall System on humidity, mould spores and CO2 concentration. Energy and Buildings, 146, 73-86. [CrossRef] [Google Scholar]
  6. Dominici, L., Fleck, R., Gill, R. L., Pettit, T. J., Irga, P. J., Comino, E., and Torpy, F. R. (2021). Analysis of lighting conditions of indoor living walls: Effects on CO2 removal. Journal of Building Engineering, 44, 102961. [CrossRef] [Google Scholar]
  7. Pérez-Urrestarazu, L., Fernández-Cañero, R., Franco, A., and Egea, G. (2016). Influence of an active living wall on indoor temperature and humidity conditions. Ecological Engineering, 90, 120–124. [CrossRef] [Google Scholar]
  8. Al-Kayiem, H.H., Effendy, M., Riyadi, T.W.B., Kurnia, J.C., and Morganadus, A. (2020). Influence of Life Green Wall and Roof Shedding on the Internal Thermal Condition of Buildings: Case Study in Malaysia. Proceeding of the 7th International Conference on Production, Energy and Reliability (ICPER 2020) Borneo Convention Centre, 35-45. [Google Scholar]
  9. Estupiñan, Y. M. M., Ruiz, C. P. T., Garcia, N. M. S., and Rincon, M. V. S. (2021). Growth analysis and CO2 absorption capability of epipremnum aureum. Proceeding of the 8th Congreso Colombiano y Conferencia Internacional En Calidad De Aire y Salud Publica, CASAP 2021 – Proceedings, 1-4. [Google Scholar]
  10. Torpy, F., Zavattaro, M., and Irga, P. (2017). Green wall technology for the phytoremediation of indoor air: A system for the reduction of high CO2 concentrations. Air Quality, Atmosphere and Health, 10(5), 575-585. [CrossRef] [Google Scholar]
  11. Zuo, L., Wu, D., Yuan, Y., Li, H., and Yu, L. (2020). Effect of arrangement and quantity of epipremnum aureum on work efficiency and subjective perceptions. Environmental Science and Pollution Research, 27(15), 17804-17814. [CrossRef] [PubMed] [Google Scholar]
  12. Taemthong, W. (2021). Air quality improvement using ornamental plants in classrooms. Journal of Green Building, 16(2), 201–216. [CrossRef] [Google Scholar]
  13. Bondarevs, A., Huss, P., Gong, S., Weister, O., and Liljedahl, R. (2015). Green walls utilizing Internet of Thing. Sensors & Transducers, 192(9), 16-21. [Google Scholar]
  14. Pichlhöfer, A., Sesto, E., Hollands, J., and Korjenic, A. (2021). Health-Related Benefits of Different Indoor Plant Species in a School Setting. Sustainability, 13(17), 9566. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.