Open Access
Issue
E3S Web of Conf.
Volume 382, 2023
8th International Conference on Unsaturated Soils (UNSAT 2023)
Article Number 03006
Number of page(s) 5
Section Cyclic & Dynamic Behavior of Unsaturated Soils
DOI https://doi.org/10.1051/e3sconf/202338203006
Published online 24 April 2023
  1. Stewart, J.P., et al., Seismic compression of two compacted earth fills shaken by the 1994 Northridge earthquake. Journal of geotechnical and geoenvironmental engineering, 2004. 130(5): p. 461-476. [CrossRef] [Google Scholar]
  2. Mousavi, S. and M. Ghayoomi, Seismic Compression of Unsaturated Silty Sands: A Strain-Based Approach. Journal of Geotechnical and Geoenvironmental Engineering, 2021. 147(5): p. 04021023. [CrossRef] [Google Scholar]
  3. Borghei, A., M. Ghayoomi, and M. Turner, Effects of groundwater level on seismic response of soil– foundation systems. Journal of Geotechnical and Geoenvironmental Engineering, 2020. 146(10): p. 04020110. [CrossRef] [Google Scholar]
  4. Lashkari, A. and M. Kadivar, A constitutive model for unsaturated soil–structure interfaces. International Journal for Numerical and Analytical Methods in Geomechanics, 2016. 40(2): p. 207-234. [CrossRef] [Google Scholar]
  5. Zhu, J., L.G. Baise, and E.M. Thompson, An updated geospatial liquefaction model for global application. Bulletin of the Seismological Society of America, 2017. 107(3): p. 1365-1385. [CrossRef] [Google Scholar]
  6. Bray, J.D. and S. Dashti, Liquefaction-induced building movements. Bulletin of Earthquake Engineering, 2014. 12(3): p. 1129-1156. [CrossRef] [Google Scholar]
  7. Nazari-Sharabian, M., et al., Water on Mars—a literature review. Galaxies, 2020. 8(2): p. 40. [CrossRef] [Google Scholar]
  8. Ochsner, E., et al., State of the art in large-scale soil moisture monitoring. Soil Science Society of America Journal, 2013: p. 1-32. [Google Scholar]
  9. Entekhabi, D., et al., The soil moisture active passive (SMAP) mission. Proceedings of the IEEE, 2010. 98(5): p. 704-716. [CrossRef] [Google Scholar]
  10. Mao, Y., W.T. Crow, and B. Nijssen, A unified data‐driven method to derive hydrologic dynamics from global SMAP surface soil moisture and GPM precipitation data. Water Resources Research, 2020. 56(2): p. e2019WR024949. [CrossRef] [Google Scholar]
  11. Chen, Q., et al., Soil moisture retrieval from SMAP: a validation and error analysis study using ground-based observations over the little Washita watershed. IEEE Transactions on Geoscience and Remote Sensing, 2017. 56(3): p. 1394-1408. [Google Scholar]
  12. Duan, Q. and A. Duan, The energy and water cycles under climate change. National Science Review, 2020. 7(3): p. 553-557. [CrossRef] [PubMed] [Google Scholar]
  13. Karthikeyan, L., I. Chawla, and A.K. Mishra, A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. Journal of Hydrology, 2020. 586: p. 124905. [CrossRef] [Google Scholar]
  14. Xu, Y., et al., Characterizing seasonally rainfall-driven movement of a translational landslide using SAR imagery and SMAP soil moisture. Remote Sensing, 2019. 11(20): p. 2347. [CrossRef] [Google Scholar]
  15. Farahani, A., M. Ghayoomi, and J.M. Jacobs, Soil Moisture Active Passive (SMAP) Data for Ground Monitoring during Earthquakes, in Geo-Congress. 2023: Los Angles, California. [Google Scholar]
  16. Farahani, A., et al., Application of Soil Moisture Active Passive (SMAP) Satellite Data in Seismic Response Assessment. Remote Sensing, 2022. 14(17): p. 4375. [CrossRef] [Google Scholar]
  17. Wald, D.J. and T.I. Allen, Topographic slope as a proxy for seismic site conditions and amplification. Bulletin of the Seismological Society of America, 2007. 97(5): p. 1379-1395. [CrossRef] [Google Scholar]
  18. SMAP. Technical References,. 2021 Nov. 1, 2021]; Available from: https://nsidc.org/data/smap/technical-references/. [Google Scholar]
  19. USGS. Earthquake Catalog. 2021 2021, November 1]; Available from: https://earthquake.usgs.gov/earthquakes/search/ (accessed 1 November 2021). [Google Scholar]
  20. Rodell, M., et al., The global land data assimilation system. Bulletin of the American Meteorological Society, 2004. 85(3): p. 381-394. [CrossRef] [Google Scholar]
  21. Kim, H., et al., Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. Remote Sensing of Environment, 2018. 204: p. 260-275. [CrossRef] [Google Scholar]
  22. Wu, Z., et al., Evaluation of Soil Moisture Climatology and Anomaly Components Derived From ERA5-Land and GLDAS-2.1 in China. Water Resources Management, 2021. 35(2): p. 629-643. [CrossRef] [Google Scholar]
  23. Joseph, G., Fundamentals of remote sensing. 2005: Universities Press. [Google Scholar]
  24. USGS. Earthquake Catalog. 2021 Nov. 1, 2021]; Available from: https://earthquake.usgs.gov/earthquakes/search/. [Google Scholar]
  25. Hashash, Y., et al., Geotechnical field reconnaissance: Gorkha (Nepal) earthquake of April 25, 2015 and related shaking sequence. Geotechnical extreme event reconnaisance GEER association report No. GEER-040, 2015: p. 1. [Google Scholar]
  26. Sun, J., Hutchinson, T.C., Clahan, K., Menq, F., Lo, E., Chang, W.-J., Tsai, C.-C., Ma, K.-F, Geotechnical Reconnaissance of the 2016 Mw 6.3 Meinong Earthquake, Taiwan. 2016: A report of the NSF- Sponsored GEER Association Team GEER Association Report No. GEER-046. http://www.geerassociation.org/. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.