Open Access
E3S Web of Conf.
Volume 384, 2023
Rudenko International Conference “Methodological Problems in Reliability Study of Large Energy Systems” (RSES 2022)
Article Number 01012
Number of page(s) 6
Published online 26 April 2023
  1. Voytov O.N., Voropai N.I., Gamm A.Z., Golub I.I., Efimov D.N. Analysis of non-homogeneities of electric power systems. Novosibirsk: Nauka (1999) (in Russian) [Google Scholar]
  2. Abramenkova N.A., Voropai N.I., Zaslavskaya T.B. Structural Analysis of Electric Power Systems: in Problems of Modeling and Synthesis. Novosibirsk: Nauka (1990) (in Russian) [Google Scholar]
  3. Lee S.T.Y., Schweppe F.C. Distance measures and coherency recognition transient stabilityequivalents, IEEE Trans. PAS-92, 92, no. 5,pp.1550–1558 (1973) [CrossRef] [Google Scholar]
  4. Voropai N.I. Methods for equivalencing the electric power systems under large disturbances (literature review). Irkutsk: SEI, 124 p. (VINITI, no. 6521–73 dep.) (1973) (in Russian) [Google Scholar]
  5. Xue Y., Wehenkel L., Belhomme R., Rousseaux P., Pavella M. et al. Extended equal area criterion revisited, IEEE Trans. PWRS-7, no. 3, pp.1012–1022 (1992) [Google Scholar]
  6. Xue Y., Pavella M. Critical cluster identification in transient stability studies, IEE Proc. Pt.C, 140, no.6, November, pp.481–489 (1993) [Google Scholar]
  7. Germond A.J., Podmore R. Dynamic aggregation of generating unit models, IEEE Trans. PAS-97, 97, no.4, pp.1060–1069 (1978) [CrossRef] [Google Scholar]
  8. Podmore R. Identification of coherent generators for dynamic equivalents, IEEE Trans. PAS-92, 92, no. 4, pp.1344–1353 (1978) [CrossRef] [Google Scholar]
  9. Kartvelishvili N.A., Galaktionov Yu.I. Idealization of complex dynamic systems. Moscow: Nauka (1976) (in Russian) [Google Scholar]
  10. Voropai N.I. Reduction of mathematical models of the dynamics of electric power systems. Novosibirsk: Nauka (1981) (in Russian) [Google Scholar]
  11. Machowski J. Dynamic equivalents for transient stability studies of electrical power systems, Elec. Power&Energy Syst., 7, no. 4, pp. 215–224 (1985) [CrossRef] [Google Scholar]
  12. Abramenkova N.A. Determination of the structure of electric power systems in the analysis of static stability, Izv. AS USSR. Energy and transport, no. 3, pp.33–40 (1985) (in Russian) [Google Scholar]
  13. Barinov V.A., Sovalov S.A. Application of modal theory for the analysis and synthesis of electric power systems, Electron. Modeling, vol. 9, no. 5, pp. 72–77 (1987) (in Russian) [Google Scholar]
  14. Abramenkova N.A., Voropai N.I., Zaslavskaya T.B. Construction of a hierarchical system of models for studying the dynamic properties of electric power systems, Simulation approach to managing the functioning of EPS, Irkutsk: SEI, pp. 11–20 (1989) (in Russian) [Google Scholar]
  15. Pires de Souza E.J.S., Cardaso E.N. Dynamic equivalent utilizing the REI approach to aggregate coherent generators, IEEE Int. Symp. Circuits and Syst. Proc., Montreal, 2, pp. 622–625 (1984) [Google Scholar]
  16. Voropai N.I., Golub I.I., Efimov D.N., Iskakov A.B., Yadykin I.B. Spectral and modal methods in studies of the stability of electric power systems and their control, Automat. & Remote Control, no. 10, pp. 3–34 (2020) (in Russian) [Google Scholar]
  17. Dimo P. Nodal Analysis of Power Systems, Abacus Press, Kent, England (1975) [Google Scholar]
  18. Stadler J., Renner H. Application of dynamic REI reduction, 4thIEEE PES Innovative Smart Grid Technologies Europe, Copenhagen, Denmark, (2013) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.