Open Access
E3S Web Conf.
Volume 385, 2023
2023 8th International Symposium on Energy Science and Chemical Engineering (ISESCE 2023)
Article Number 02031
Number of page(s) 5
Section Green Chemical Technology and Energy Saving and Emission Reduction
Published online 04 May 2023
  1. Khan M., Zhao H., Zou W., Chen Z., Cao W., Fang J., Xu J., Zhang L., Zhang J., Recent progresses in electrocatalysts for water electrolysis. Electrochemical Energy Reviews, 2018, 1, 483–530. [CrossRef] [Google Scholar]
  2. Turner J., Sverdrup G., Mann M. K., Maness P. C., Kroposki B., Ghirardi M., Evans R. J., Blak D., Renewable hydrogen production. International Journal of Energy Research, 2008, 32, 379. [CrossRef] [Google Scholar]
  3. El-Refaei S. M., Russo P. A., Amsalem P., Koch N., Pinna N., The importance of ligand selection on the formation of metal phosphonate-derived CoMoP and CoMoP2 nanoparticles for catalytic hydrogen evolution, ACS Appl. Nano Mater., 2020, 3, 4147–4156. [Google Scholar]
  4. Li J., Liu Y., Li X., Pan Q. Q., Sun D., Men L. L., Sun B., Xu C. Y., Su Z. M., Ammonium polyphosphate induced bimetallic phosphides nanoparticles coated with porous N-doped carbon for efficiently electrochemical hydrogen evolution, Chem. Eng. J., 2022, 431, 133696. [CrossRef] [Google Scholar]
  5. Xu Y. L., Yan M. F., Liu Z., Wang J. Y., Zhai Z. Z., Ren B., Dong X. X., Miao J. F., Liu Z. F., Nanostructures Ni2P/MoP@N-doping porous carbon for effificient hydrogen evolution over a broad pH range, Electrochimica Acta, 2020, 363, 137151. [CrossRef] [Google Scholar]
  6. Eladgham E. H., Rodene D. D., Sarkar R., Arachchige I. U., Gupta R. B., Electrocatalytic Activity of Bimetallic Ni-Mo-P Nanocrystals for Hydrogen Evolution Reaction, ACS Appl. Nano Mater., 2020, 3, 8199–8207. [CrossRef] [Google Scholar]
  7. Peng Z., Wang K. L., Xu W., Wang B. B., Mao B. H., Han Y., Tsung C. K., Yang B., Liu Z., Li Y. M., Strong Interface Enhanced Hydrogen Evolution over MolybdenumBased Catalysts, ACS Appl. Energy Mater., 2020, 3, 5219–5228. [CrossRef] [Google Scholar]
  8. Li J., Zheng H. Y., Xu C. Y., Su Z. M., Li X., Sun J., Bimetallic Phosphides as High-Efficient Electrocatalysts for Hydrogen Generation, Inorg. Chem., 2021, 60, 1624–1630. [CrossRef] [PubMed] [Google Scholar]
  9. Zhang G., Wang G. C., Liu Y., Liu H., Qu J., Li J. H., Highly Active and stable catalysts of phytic acidderivative transition metal phosphides for full water splitting, Journal of the American Chemical Society, 2016, 138, 14686–14693. [CrossRef] [PubMed] [Google Scholar]
  10. Pan Q. Q., Xu C. Y., Li X., Zhang J. F., Hu X. L., Geng Y., Su Z. M., Porous Ni-Mo bimetallic hybrid electrocatalyst by intermolecular forces in precursors for enhanced hydrogen generation, 2021, 405, 12696. [Google Scholar]
  11. Li X., Wang X. L., Zhou J., Han L., Sun C. Y., Wang Q. Q., Su Z. M., Ternary hybrids as efficient bifunctional electrocatalysts derived from bimetallic metal-organic frameworks for overall water splitting, J. Mater. Chem. A., 2018, 6, 5789–5796. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.