Open Access
Issue
E3S Web Conf.
Volume 385, 2023
2023 8th International Symposium on Energy Science and Chemical Engineering (ISESCE 2023)
Article Number 04024
Number of page(s) 8
Section Polymer Chemistry and Chemical Research Progress
DOI https://doi.org/10.1051/e3sconf/202338504024
Published online 04 May 2023
  1. Barbosa, A.G.H., Monteiro, J.G.S. (2012) On the electronic structure of the diazomethane molecule. Theor Chem Acc., 131: 1–16. [CrossRef] [Google Scholar]
  2. Tang, M., Xing, D., Cai, M.Q., et al. (2014) Diazo Compounds-Involved Catalytic Asymmetric Multicomponent Reactions. Chinese J Org Chem., 34: 1268–1276. [CrossRef] [Google Scholar]
  3. Ford, A., Miel, H., Ring, A., et al. (2015) Modern organic synthesis with a-diazocarbonyl compounds. Chem Rev., 115: 9981–10080. [CrossRef] [PubMed] [Google Scholar]
  4. Green, S.P., Wheelhouse, K.M., Payne, A.D., et al. (2019) Thermal stability and explosive hazard assessment of diazo compounds and diazo transfer reagents. Org Process Res Dev., 24: 67–84. [Google Scholar]
  5. Müller, S.T.R., Wirth, T. (2015) Diazo Compounds in Continuous-Flow Technology. ChemSusChem., 8: 245–250. [CrossRef] [Google Scholar]
  6. Movsisyan, M., Delbeke, E.I.P., Berton, J., et al. (2016) Taming hazardous chemistry by continuous flow technology. Chem Soc Rev., 45: 4892–4928. [CrossRef] [PubMed] [Google Scholar]
  7. Gao, Y.P., Wang, J.B. (2018) Continuous Flow Reaction of Diazo Compounds. Chinese J Org Chem., 38: 1275–1291. [CrossRef] [Google Scholar]
  8. Martin, L.J., Marzinzik, A.L., Ley, S.V., et al. (2011) Safe and reliable synthesis of diazoketones and quinoxalines in a continuous flow reactor. Org Lett., 13: 320–323. [CrossRef] [PubMed] [Google Scholar]
  9. Yang, H., Martin, B., Schenkel, B. (2018) On-demand generation and consumption of diazomethane in multistep continuous flow systems. Org Process Res Dev., 22: 446–456. [CrossRef] [Google Scholar]
  10. Pearce, M. (1980) The Rates of Diazomethane Formation from Methylnitrosoamides. The stability of diazomethane solutions towards aqueous alkalis. Helv Chim Acta., 63: 887–891. [CrossRef] [Google Scholar]
  11. Shulishov, E.V., Pantyukh, O.A., Menchikov, L.G., et al. (2019) Catalytic cyclopropanation of spiro[2.4]hepta-4, 6-diene with diazomethane. Tetrahedron Lett., 60: 2043–2045. [CrossRef] [Google Scholar]
  12. Rossi, E., Woehl, P., Maggini, M. (2011) Scalable in situ diazomethane generation in continuous-flow reactors. Org Process Res Dev., 16: 1146–1149. [Google Scholar]
  13. Garbarino, S., Guerra, J., Poechlauer, P., et al. (2016) One-pot synthesis of a-haloketones employing a membrane-based semibatch diazomethane generator. J Flow Chem., 6: 211–217. [CrossRef] [Google Scholar]
  14. Lehmann H. (2017) A scalable and safe continuous flow procedure for in-line generation of diazomethane and its precursor MNU. Green Chem., 19: 1449–1453. [CrossRef] [Google Scholar]
  15. Hong, H., Lu, J.P., Zhang, E.X., et al. (2020) W.O. Patent 2020/232625. [Google Scholar]
  16. Shields, S.W.J., Manthorpe, J.M. (2014) Manthorpe, Efficient, scalable and economical preparation of tris(deuterium)- and 13C-labelled N-methyl-N-nitroso-p-toluenesulfonamide (Diazald®) and their conversion to labelled diazomethane. J Labelled Compd Rad., 57: 674–679. [CrossRef] [Google Scholar]
  17. Morandi, B., Carreira, E.M. (2012) Iron-catalyzed cyclopropanation in 6 M KOH with in situ generation of diazomethane, Science., 335: 1471–1474. [CrossRef] [PubMed] [Google Scholar]
  18. Hong, H., Tao, J., Guo, X.W., et al. (2010) C.N. Patent 10184406. [Google Scholar]
  19. He, K. (2011) On-site Synthesis and In-situ Conversion of Diazomethane in Micro-reactor. Shanghai: East China University of Science and Technology. [Google Scholar]
  20. Yang, C., Shi, Y., He, K., et al. (2019) Understanding of two-stage continuous microreaction technology for in-situ generation and consecutive conversion of diazomethane. J Taiwan Inst Chem E., 98: 94–98. [CrossRef] [Google Scholar]
  21. Duan X., Huang Z., Qian G., et al. (2020) Unprecedented yield of methyl-esterification with in-situ generated diazomethane in a microchannel reactor with methanol as solvent. Chem Eng Sci., 213: 115397. [CrossRef] [Google Scholar]
  22. Maurya, R.A., Park, C.P., Lee, J.H., et al. (2011) Continuous in situ generation, separation, and reaction of diazomethane in a dual-channel microreactor. Angew., 50: 5952–5955. [CrossRef] [Google Scholar]
  23. Zhang J. A Simple Method and Apparatus for Producing Diazomethane. (2013) Guangdong Chemical Industry., 40: 116–117. [Google Scholar]
  24. Mastronardi, F., Gutmann, B., Kappe, C.O. (2013) Continuous flow generation and reactions of anhydrous diazomethane using a teflon AF-2400 tube-in-tube reactor. Org Lett., 15: 5590–5593. [CrossRef] [PubMed] [Google Scholar]
  25. Koolman, H.F., Kantor, S., Bogdan, A.R., et al. (2016) Automated library synthesis of cyclopropyl boronic esters employing diazomethane in a tubein-tube flow reactor. Org Biomol Chem., 14: 6591–6595. [CrossRef] [PubMed] [Google Scholar]
  26. Pinho, V.D., Gutmann, B., Miranda, L.S.M., et al. (2014) Continuous flow synthesis of a-halo ketones: essential building blocks of antiretroviral agents. J Org Chem., 79: 1555–1562. [CrossRef] [PubMed] [Google Scholar]
  27. Pinho, V.D., Gutmann, B., Kappe, C.O. (2014) Continuous flow synthesis of ß-amino acids from a-amino acids via Arndt-Eistert homologation. Rsc Adv., 4: 37419–37422. [CrossRef] [Google Scholar]
  28. McKee, M., Haner, J., Carlson, E., et al. (2014) Synthesis of cyclopropanated 7-oxabenzonorbornadienes. Synthesis., 46: 1518–1524. [CrossRef] [Google Scholar]
  29. Carlson, E., Duret, G., Blanchard, N., et al. (2016) Synthesis of cyclopropanated [2.2.1] heterobicycloalkenes: An improved procedure. Synthetic Commun., 46: 55–62. [CrossRef] [Google Scholar]
  30. Dallinger, D., Pinho, V.D., Gutmann, B., et al. (2016) Laboratory-scale membrane reactor for the generation of anhydrous diazomethane. J Org Chem., 81: 5814–5823. [CrossRef] [PubMed] [Google Scholar]
  31. Wernik, M., Poechlauer, P., Schmoelzer, C., et al. (2019) Design and optimization of a continuous stirred tank reactor Cascade for membrane-based diazomethane production: synthesis of a-Chloroketones. Org Process Res Dev., 23: 1359–1368. [CrossRef] [Google Scholar]
  32. Sheeran, J.W., Campbell, K., Breen, C.P., et al. (2020) Scalable on-demand production of purified diazomethane suitable for sensitive catalytic reactions. Org Process Res Dev., 25: 522–528. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.