Open Access
Issue
E3S Web Conf.
Volume 385, 2023
2023 8th International Symposium on Energy Science and Chemical Engineering (ISESCE 2023)
Article Number 04025
Number of page(s) 5
Section Polymer Chemistry and Chemical Research Progress
DOI https://doi.org/10.1051/e3sconf/202338504025
Published online 04 May 2023
  1. Sulaiman, N. N. and Ismail, M. (2016). Enhanced hydrogen storage properties of MgH2 co-catalyzed with K 2 NiF6 and CNTs. Dalton Transactions, 45, 19380–8. [CrossRef] [PubMed] [Google Scholar]
  2. Kumar, S. S. and Himabindu, V. (2019). Hydrogen production by PEM water electrolysis-A review. Materials Science for Energy Technologies, 2, 442–454. [CrossRef] [Google Scholar]
  3. Puszkiel, J., et al. (2017) Tetrahydroborates: Development and potential as hydrogen storage medium. Inorganics, 5: 74. [CrossRef] [Google Scholar]
  4. Afonso, G., Bonakdarpour, A. and Wilkinson, D. P. (2013). Hydrogen storage properties of the destabilized 4NaBH4/5Mg2NiH4 composite system. The Journal of Physical Chemistry C, 117, 21105–111. [CrossRef] [Google Scholar]
  5. Chong, L., Zou, J., Zeng, X. and Ding, W. (2013) Reversible hydrogen sorption in NaBH4 at lower temperatures. Journal of Materials Chemistry A, 1, 13510–23. [CrossRef] [Google Scholar]
  6. Zou, J., Li, L., Zeng, X. and Ding, W. (2012). Reversible hydrogen storage in a 3NaBH4/YF3 composite. International journal of hydrogen energy, 37, 17118–25. [CrossRef] [Google Scholar]
  7. Ngene, P., van den Berg, R., Verkuijlen, M. H., de Jong, K. P. and de Jongh, P. E. (2011) Reversibility of the hydrogen desorption from NaBH4 by confinement in nanoporous carbon. Energy and Environmental Science, 4, 4108–4115. [CrossRef] [Google Scholar]
  8. Mao, J., Guo, Z., Nevirkovets, I. P., Liu, H. K. and Dou, S. X. (2012). Hydrogen de-/absorption improvement of NaBH4 catalyzed by titanium-based additives. The Journal of Physical Chemistry C, 116, 1596–1604. [CrossRef] [Google Scholar]
  9. Huang, X., Xiao, X., Shao, J., Zhai, B., Fan, X., Cheng, C. and Chen, L. (2016). Building robust architectures of carbon-wrapped transition metal nanoparticles for high catalytic enhancement of the 2LiBH4-MgH2 system for hydrogen storage cycling performance. Nanoscale, 8, 14898–908. [CrossRef] [PubMed] [Google Scholar]
  10. Christian, M. and Aguey-Zinsou, K. F. (2013). Synthesis of core-shell NaBH 4@ M (M= Co, Cu, Fe, Ni, Sn) nanoparticles leading to various morphologies and hydrogen storage properties. Chemical Communications, 49, 6794–6796. [CrossRef] [PubMed] [Google Scholar]
  11. Khazaei, M., Bahramy, M. S., Venkataramanan, N. S., Mizuseki, H. and Kawazoe, Y. (2009) Chemical engineering of prehydrogenated C and BN-sheets by Li: Application in hydrogen storage. Journal of Applied Physics, 10: 094303. [CrossRef] [Google Scholar]
  12. Milanese, C., et al. (2011) Thermodynamic and kinetic investigations on pure and doped NaBH4-MgH2 system. The Journal of Physical Chemistry C, 115, 3151–3162. [CrossRef] [Google Scholar]
  13. Zhu, J., Wang, H., Cai, W., Liu, J., Ouyang, L. and Zhu, M. (2017) The milled LiBH4/h-BN composites exhibiting unexpected hydrogen storage kinetics and reversibility. International Journal of Hydrogen Energy, 42, 15790–98. [CrossRef] [Google Scholar]
  14. Ali, N. A., Yahya, M. S., Mustafa, N. S., Sazelee, N. A., Idris, N. H. and Ismail, M. (2019). Modifying the hydrogen storage performances of NaBH4 by catalyzing with MgFe2O4 synthesized via hydrothermal method. International Journal of Hydrogen Energy, 44, 6720–6727. [CrossRef] [Google Scholar]
  15. Mao, J. F., Yu, X. B., Guo, Z. P., Poh, C. K., Liu, H. K., Wu, Z. and Ni, J. (2009). Improvement of the LiAlH4- NaBH4 system for reversible hydrogen storage. The Journal of Physical Chemistry C, 113, 10813–18. [CrossRef] [Google Scholar]
  16. Mustafa, N. S., Yap, F. H., Yahya, M. S. and Ismail, M. (2018). The hydrogen storage properties and reaction mechanism of the NaAlH4+ Ca(BH4)2 composite system. International Journal of Hydrogen Energy, 43, 11132–40. [CrossRef] [Google Scholar]
  17. Yap, F. H., Mustafa, N. S., Yahya, M. S., Mohamad, A. A. and Ismail, M. (2018). A study on the hydrogen storage properties and reaction mechanism of Na3AlH6-LiBH4 composite system. International Journal of Hydrogen Energy, 43, 8365–8374. [CrossRef] [Google Scholar]
  18. Garroni, S., Milanese, C., Girella, A., Marini, A., Mulas, G., Menéndez, E. and Baró, M. D. (2010). Sorption properties of NaBH4/MH2 (M= Mg, Ti) powder systems. International journal of hydrogen energy, 35, 5434–5441. [CrossRef] [Google Scholar]
  19. Yahya, M. S., Ali, N. A., Sazelee, N. A., Mustafa, N. S., Yap, F. H. and Ismail, M. (2019). Intensive investigation on hydrogen storage properties and reaction mechanism of the NaBH4-Li3AlH6 destabilized system. International Journal of Hydrogen Energy, 44, 21965–78. [CrossRef] [Google Scholar]
  20. Jin, S. A., Shim, J. H., Cho, Y. W., Yi, K. W., Zabara, O. and Fichtner, M. (2008). Reversible hydrogen storage in LiBH4-Al-LiH composite powder. Scripta materialia, 58, 963–965. [CrossRef] [Google Scholar]
  21. Shim, J. H., Lim, J. H., Rather, S. U., Lee, Y. S., Reed, D., Kim, Y. and Cho, Y. W. (2010). Effect of hydrogen back pressure on dehydrogenation behavior of LiBH4-based reactive hydride composites. The Journal of Physical Chemistry Letters, 1, 59–63. [CrossRef] [Google Scholar]
  22. Gennari, F. C. (2011). Destabilization of LiBH4 by MH2 (M= Ce, La) for hydrogen storage: Nanostructural effects on the hydrogen sorption kinetics. International journal of hydrogen energy, 36, 15231–38. [CrossRef] [Google Scholar]
  23. Gennari, F. C., Albanesi, L. F., Puszkiel, J. A. and Larochette, P. A. (2011). Reversible hydrogen storage from 6LiBH4-MCl3 (M= Ce, Gd) composites by in-situ formation of MH2. International journal of hydrogen energy, 36, 563–570. [CrossRef] [Google Scholar]
  24. Manoharan, K., Palaniswamy, V. K., Raman, K. and Sundaram, R. (2021). Investigation of solid state hydrogen storage performances of novel NaBH4/Ah-BN nanocomposite as the hydrogen storage medium for fuel cell applications. Journal of Alloys and Compounds, 860: 158444. [CrossRef] [Google Scholar]
  25. Zheng, J., Liu, M., Wu, F. and Zhang, L. (2021). Enabling easy and efficient hydrogen release below 80° C from NaBH4 with multi-hydroxyl xylitol. International Journal of Hydrogen Energy, 46, 28156–65. [CrossRef] [Google Scholar]
  26. Paskevicius, M., Jepsen, L. H., Schouwink, P., Černý, R., Ravnsbæk, D. B., Filinchuk, Y. and Jensen, T. R. (2017). Metal borohydrides and derivatives-synthesis, structure, and properties. Chemical Society Reviews, 46, 1565–1634. [CrossRef] [PubMed] [Google Scholar]
  27. Chen, W., Ju, S., Sun, Y., Zhang, T., Wang, J., Ye, J. and Yu, X. (2022). Thermodynamically favored stable hydrogen storage reversibility of NaBH4 inside of bimetallic nanoporous carbon nanosheets. Journal of Materials Chemistry A, 10, 7122–7129. [CrossRef] [Google Scholar]
  28. Ravnsbæk, D., Filinchuk, Y., Cerenius, Y., Jakobsen, H. J., Besenbacher, F., Skibsted, J. and Jensen, T. R. (2009). A series of mixed-metal borohydrides. Angewandte Chemie International Edition, 48, 6659–6663. [CrossRef] [Google Scholar]
  29. Xia, G., Li, L., Guo, Z., Gu, Q., Guo, Y., Yu, X. and Liu, Z. (2013). Stabilization of NaZn (BH4)3 via nanoconfinement in SBA-15 towards enhanced hydrogen release. Journal of Materials Chemistry A, 1, 250–257. [CrossRef] [Google Scholar]
  30. Hoang, K., Janotti, A. and Van de Walle, C. G. (2011) The Particle-Size Dependence of the Activation Energy for Decomposition of Lithium Amide. Angewandte Chemie, 123, 10352–55. [CrossRef] [Google Scholar]
  31. Jeon, K. J. (2011). Moon HR Ruminski AM Jiang B. Kisielowski C. Bardhan R. Urban JJ Nat. Mater, 10: 286. [Google Scholar]
  32. Chong, L., Zeng, X., Ding, W., Liu, D. J. and Zou, J. (2015) NaBH4 in “graphene wrapper:” significantly enhanced hydrogen storage capacity and renewability through nano encapsulation. Advanced Materials, 27, 5070–5074. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.