Open Access
E3S Web Conf.
Volume 385, 2023
2023 8th International Symposium on Energy Science and Chemical Engineering (ISESCE 2023)
Article Number 04026
Number of page(s) 4
Section Polymer Chemistry and Chemical Research Progress
Published online 04 May 2023
  1. Lei W., Jin H. M., Gao J. C. and Chen Y. R. 2021 Efficient hydrogen generation from the NaBH4 hydrolysis by amorphous Co-Mo-B alloy supported on reduced graphene oxide. Journal of Materials Research 36 4154–4168. [CrossRef] [Google Scholar]
  2. Chakik F. E., Kaddami M. and Mikou M. 2017 Effect of operating parameters on hydrogen production by electrolysis of water. International Journal of Hydrogen Energy 42 25550–7. [CrossRef] [Google Scholar]
  3. Sadeghi S., Ghandehariun S. and Naterer G. F. 2020 Exergoeconomic and multi-objective optimization of a solar thermochemical hydrogen production plant with heat recovery. Energy Conversion and Management 225 113441. [CrossRef] [Google Scholar]
  4. Xin Y., Wang Z. and Jiang Y. 2019 Kinetic study of NaBH4 catalytic hydrolysis using supported NiCo2O4. Materials Research Express 6 125530. [CrossRef] [Google Scholar]
  5. Yu Y. Q., Kang L., Sun L. X. and Xu F. 2022 Bimetallic Pt-Ni Nanoparticles Confined in Porous Titanium Oxide Cage for Hydrogen Generation from NaBH4 Hydrolysis. Nanomaterials 12 2550. [CrossRef] [PubMed] [Google Scholar]
  6. Lai J. L., Luo W. J. and Kuan Y. D. 2021 The Effect of Hydrogen Production Rate of the via Different Preparation of Co-Based Catalyst with Sodium Borohydride. Catalysts 11 528. [CrossRef] [Google Scholar]
  7. Liang Y., Dai H. B., Ma L. P. Wang, P. and Cheng H. M. 2010 Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst. International Journal of Hydrogen 35 3023–3028. [CrossRef] [Google Scholar]
  8. Crisafulli C., Scirè S., Zito R. and Bongiorno C. 2012 Role of the Support and the Ru Precursor on the Performance of Ru/Carbon Catalysts Towards H2 Production Through NaBH4 Hydrolysis. Catalysis 142 882–888. [Google Scholar]
  9. S. Dou et al. 2021 Well-Dispersed Ru-Clusters Decorating Nanobox-Structured CoP Synergistically Catalyze the NaBH4Hydrolysis and Electro-Reductive H2 Evolution. ChemCatChem 13 3628–3635. [CrossRef] [Google Scholar]
  10. Zhang J. P., Lin F. Z., Yang L. J., He Z. Y., Huang X. S., Zhang D. W. and Dong H. 2019 Ultrasmall Ru nanoparticles supported on chitin nanofibers for hydrogen production from NaBH4 hydrolysis. Chinese Chemical Letters 31 2019–2022. [Google Scholar]
  11. Lai Q., Alligier D., Aguey-Zinsou K. F. and Demirci U. B. 2019 Hydrogen generation from a sodium borohydride-nickel core@shell structure under hydrolytic conditions. Nanoscale Adv 1 2707–2717. [CrossRef] [PubMed] [Google Scholar]
  12. Lee Y. J. et al. 2020 Surface area enhancement of nickel foam by low-temperature chemical alloying/dealloying and its application for sodium borohydride hydrolysis. Journal of Alloys and Compounds 843 155759. [CrossRef] [Google Scholar]
  13. Ekinci A., Şahin Ö. and Horoz S. 2021 Kinetics of catalytic hydrolysis of NaBH4 solution: Ni-La-B catalyst. Journal of the Australian Ceramic Society 58 113–121. [Google Scholar]
  14. Nur A., Jumari A., Endah R. D., Paramitha T., Ramadhan S. I., Ismarlina, H., Prahaspati, K. and Laurencia A.K. 2022 The Release of Hydrogen from NaBH4 with Ni-Cu-B/Hydroxyapatite as The Catalyst. Evergreen 9 421–426. [CrossRef] [Google Scholar]
  15. Kaya M. and Bekirogillari M. 2019 Investigation of Hydrogen Production from Sodium Borohydride Methanolysis in the Presence of Al2O3/Spirulina Platensis Supported Co Catalyst. European Journal of Science and Technology 16 69–76. [CrossRef] [Google Scholar]
  16. Guo J. Y., Wang B. Z., Yang D. D., Wan Z. X., Yan P. X., Tian J. M., Isimjan T. T. and Yang X. L. 2020 Rugaelike Ni2P-CoP nanoarrays as a bi-functional catalyst for hydrogen generation: NaBH4 hydrolysis and water reduction. Applied Catalysis B: Environmental 265 118584. [CrossRef] [Google Scholar]
  17. Zhang H. M., Zhang L., Rodríguez-Pérezc I. A., Miao W. K., Chen K. L., Wang W. F., Li Y. and Han S. M. 2021 Carbon nanospheres supported bimetallic Pt-Co as an efficient catalyst for NaBH4 hydrolysis. Applied Surface Science 540 148296. [CrossRef] [Google Scholar]
  18. Zhao S. X., Zhang J. N., Chen Z. L., Tong Y. B., Shen J. M., Li D. M. and Zhang M. W. 2019 Hydrogen generation and simultaneous removal of Cr(VI) by hydrolysis of NaBH4 using Fe-Al-Si composite as accelerator. Chemosphere 223 131–139. [CrossRef] [PubMed] [Google Scholar]
  19. Kobayashi Y., Suzuk D., Yokoyama S. and Shoji R. 2022 Molten salt synthesis of high-entropy alloy AlCoCrFeNiV nanoparticles for the catalytic hydrogenation of p-nitrophenol by NaBH4. International Journal of Hydrogen Energy 47 3722–3732. [CrossRef] [Google Scholar]
  20. Mu J., Ye Y., Wang J., Zhu Z., Wang Y. and Zhang H. 2021 Dislocation-driven high catalytic performance of FeCoNiCrMn high-entropy alloy for the hydrolysis of NaBH4. Applied Physics Letters 119 121901. [CrossRef] [Google Scholar]
  21. Saka C. 2022 Phosphorus and sulphur-doped microalgae carbon as a highly active metal-free catalyst for efficient hydrogen release in NaBH4 methanolysis. Fuel 309 122183. [CrossRef] [Google Scholar]
  22. Abebe M. W., Baye A. F. and Kim H. 2022 Poly (acrylic acid)/polysaccharides IPN derived metal free catalyst for rapid hydrogen generation via NaBH4 methanolysis. International Journal of Hydrogen Energy 47 32060–70. [CrossRef] [Google Scholar]
  23. Saka C. and Balbay A. 2022 Metal-free catalyst fabrication by incorporating oxygen groups on the surface of the carbonaceous sample and efficient hydrogen production from NaBH4 methanolysis. International Journal of Hydrogen Energy 47 7242–7251. [CrossRef] [Google Scholar]
  24. Chen W., Ouyang L. Z., Liu J. W., Yao X. D., Wang H., Liu Z. W. and Zhu M. 2017 Hydrolysis and regeneration of sodium borohydride (NaBH4) - A combination of hydrogen production and storage. Journal of Power Sources 359 400–407. [CrossRef] [Google Scholar]
  25. Zhu Y. Y., Ouyang L. Z., Zhong H., Liu J. W., Wang H., Shao H. Y., Huang Z. G. and Zhu M. 2020 Closing the Loop for Hydrogen Storage: Facile Regeneration of NaBH4 from its Hydrolytic Product. Angew Chem Int Ed Engl 59 8623–8629. [CrossRef] [PubMed] [Google Scholar]
  26. Chen K., Ouyang L. Z., Zhong H., Liu J. W., Wang H., Shao H. Y., Zhang Y. and Zhu M. 2019 Converting H+ from coordinated water into H- enables super facile synthesis of LiBH4. Green Chemistry 21 4380–4387. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.