Open Access
E3S Web Conf.
Volume 386, 2023
Annual International Scientific Conferences: GIS in Central Asia – GISCA 2022 and Geoinformatics – GI 2022 “Designing the Geospatial Ecosystem”
Article Number 03009
Number of page(s) 8
Section GIS in Mechanization and Automatization of Agriculture and Water Resources
Published online 12 May 2023
  1. U. Mukhtorov, Stimulating the efficient use of agricultural land based on the improved methodology for land tax calculation, ed V Breskich and S Uvarova, J. E3S Web Conf., 244, 03013 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  2. S. Khidirov, R. Oymatov, B. Norkulov, F. Musulmanov, I. Rayimova, I. Raimova, Exploration of the hydraulic structure of the water supply facilities operation mode and flow, J. E3S Web Conf., 264, 1-10 (2021) [Google Scholar]
  3. A. Inamov, I. Ruziev, S. Nurjanov, Interpolyation in smoothing tin model of the earth, J. IOP Conf. Ser. Mater. Sci. Eng., 1030 (2021) [Google Scholar]
  4. Z. Abdullaev, D. Kendjaeva, S. Xikmatullaev, Innovative approach of distance learning in the form of online courses 2019, International Conference on Information Science and Communications Technologies (ICISCT) (IEEE), 1-3 (2019) [Google Scholar]
  5. J. Choriev, T. Muslimov, R. Abduraupov, A. Khalimbetov, S. Abdurakhmonov, Fundamentals of developing and designing portable weirs for farmlands, J. IOP Conf. Ser. Mater. Sci. Eng. 869 072023 (2020) [CrossRef] [Google Scholar]
  6. I. Colkesen, T. Kavzoglu, Comparative Evaluation of Decision-Forest Algorithms in Object-Based Land Use and Land Cover Mapping (Elsevier Inc., 2019) [Google Scholar]
  7. J. Jiang, W. Cai, H. Zheng, T. Cheng, Y. Tian, Y. Zhu, R. Ehsani, Y. Hu, Q. Niu, L. Gui, X. Yao, Using digital cameras on an unmanned aerial vehicle to derive optimum color vegetation indices for leaf nitrogen concentration monitoring in winter wheat, J. Remote Sens. 11 (2019) [Google Scholar]
  8. G. S. Bhunia, P. K. Shit, H. R. Pourghasemi, M. Edalat, Prediction of Soil Organic Carbon and its Mapping Using Regression Analyses and Remote Sensing Data in GIS and R (Elsevier Inc., 2019) [Google Scholar]
  9. W. Chen, H. R. Pourghasemi, S. Zhang, J. Wang, A Comparative Study of Functional Data Analysis and Generalized Linear Model Data-Mining Techniques for Landslide Spatial Modeling (Elsevier Inc., 2019) [Google Scholar]
  10. H. R. Pourghasemi, M. Mohseni Saravi, Land-Subsidence Spatial Modeling Using the Random Forest Data-Mining Technique (Elsevier Inc., 2019) [Google Scholar]
  11. M. Zare, K. Drastig, M. Zude-Sasse, Tree water status in apple orchards measured by means of land surface temperature and vegetation index (LST-NDVI) trapezoidal space derived from landsat 8 satellite images Sustain., 12, 1-19 (2020) [Google Scholar]
  12. N. Tantalaki, S. Souravlas, M. Roumeliotis, Data-Driven Decision Making in Precision Agriculture: The Rise of Big Data in Agricultural Systems, J. Agric. Food Inf., 20, 344-80 (2019) [CrossRef] [Google Scholar]
  13. T. Shi, X. Li, L. Xin, X. Xu, K. Etingoff, The spatial distribution of farmland abandonment and its influential factors at the township level: A case study in the mountainous area of China, 70 (Elsevier, 2018) [Google Scholar]
  14. A. Kavvadias, E. Psomiadis, M. Chanioti, E. Gala, S. Michas, Precision agriculture Comparison and evaluation of innovative very high resolution (UAV) and LandSat data CEUR, Workshop Proc., 1498, 376-86 (2015) [Google Scholar]
  15. H. Yin, A. V. Prishchepov, T. Kuemmerle, B. Bleyhl, J. Buchner, V. C. Radeloff, Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series, J. Remote Sens. Environ., 210, 12-24 (2018) [CrossRef] [Google Scholar]
  16. S. Mori, M. Kato, T. Ido, GISELA – GIS-based evaluation of land use and agriculture market analysis under global warming, J. Appl. Remote Sens., 3, 201-552018 (2018) [Google Scholar]
  17. Y. Qin, Z. Jixian, Methodology to develop land capability maps using geoinformation systems (GIS), Geo-spatial Inf. Sci., 5, 51-5 (2002) [CrossRef] [Google Scholar]
  18. V. Radha Krishna Murthy, Crop Growth Modeling and Its Applications in Agricultural Meteorology, J. Satell. Remote Sens. GIS Appl. Agric. Meteorol. 235 (2004) [Google Scholar]
  19. J. Mladen, P. Ivan, J. Tomislav, Methodology to develop land capability maps using geo-information systems (GIS), African J. Agric. Res. 8, 1354-60 (2013) [CrossRef] [Google Scholar]
  20. L. Melgar-García, M. T. Godinho, R. Espada, D. Gutiérrez-Avilés, I. S. Brito, F. Martínez-Álvarez, A. Troncoso, C. Rubio-Escudero, Discovering Spatio-Temporal Patterns in Precision Agriculture Based on Triclustering Advances in Intelligent Systems and Computing, 1268, 226-36 (2021) [Google Scholar]
  21. I. Aslanov, S. Kholdorov, S. Ochilov, A. Jumanov, Z. Jabbarov, I. Jumaniyazov, N. Namozov, Evaluation of soil salinity level through using Landsat-8 OLI in Central Fergana valley, Uzbekistan, ed V Kankhva, J. E3S Web Conf., 258, 03012 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  22. R. Oymatov, S. Safayev, Creation of a complex electronic map of agriculture and agro-geo databases using GIS techniques, J. E3S Web Conf., 258, 1-12 (2021) [Google Scholar]
  23. V. Balázsik, Z. Tóth, I, Abdurahmanov, Analysis of Data Acquisition Accuracy with UAV, Int. J. Geoinformatics 17, 1-10 (2021) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.