Open Access
Issue
E3S Web Conf.
Volume 386, 2023
Annual International Scientific Conferences: GIS in Central Asia – GISCA 2022 and Geoinformatics – GI 2022 “Designing the Geospatial Ecosystem”
Article Number 04002
Number of page(s) 7
Section GIS in Geodesy and Cartography
DOI https://doi.org/10.1051/e3sconf/202338604002
Published online 12 May 2023
  1. O.A. Denton, V.O. Aduramigba-Modupe, A.O. Ojo, O.D Adeoyolanu, K.S. Are, A.O. Adelana, A.O. Oyedele, A.O. Adetayo, A.O. Oke, Assessment of spatial variability and mapping of soil properties for sustainable agricultural production using geographic information system techniques (GIS), J. Cogent Food Agric., 3, 1-12 (2017) [CrossRef] [Google Scholar]
  2. Y. Qin, Z. Jixian, Methodology to develop land capability maps using geo-information systems (GIS), J. Geo-spatial Inf. Sci., 5, 51-5 (2002) [CrossRef] [Google Scholar]
  3. S. M. J. Baban, C. Luke, Mapping agricultural land use using retrospective ground referenced data, satellite sensor imagery and GIS, Int. J. Remote Sens., 21, 1757-62, (2000) [CrossRef] [Google Scholar]
  4. H. Yin, A.V. Prishchepov, T. Kuemmerle, B. Bleyhl, J. Buchner, V.C. Radeloff, Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series, J. Remote Sens. Environ., 210, 12-24 (2018) [CrossRef] [Google Scholar]
  5. S. Narbaev, S. Abdurahmanov, O. Allanazarov, A. Talgatovna, I. Aslanov, Modernization of telecommunication networks on the basis of studying demographic processes using GIS, J. E3S Web Conf., 263, 04055 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  6. R.K. Oymatov, Z.J. Mamatkulov, M.P. Reimov, R.I Makhsudov, R.N. Jaksibaev, Methodology development for creating agricultural interactive maps, J. IOP Conf. Ser. Earth Environ. Sci., 868 (2021) [Google Scholar]
  7. S. Khidirov, R. Oymatov, B. Norkulov, F. Musulmanov, I. Rayimova, I. Raimova, Exploration of the hydraulic structure of the water supply facilities operation mode and flow, J. E3S Web Conf., 264, 1-10 (2021) [Google Scholar]
  8. Z. Mamatkulov, E. Safarov, R. Oymatov, I. Abdurahmanov, M. Rajapbaev, Application of GIS and RS in real time crop monitoring and yield forecasting: a case study of cotton fields in low and high productive farmlands, J. E3S Web Conf., 227, 03001 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  9. G.R. Ruecker, Z. Shi, M. Mueller, C. Conrad, N. Ibragimov, J.P. Lamers, C. Martius C. Strunz, G.S.W. Dech, D. Support, Cotton Yield Estimation in Uzbekistan Integrating Modis, Landsat Etm + and Field Data, Comm. VII, WG VIII/10, 123-9 (2003) [Google Scholar]
  10. S. Xie, L. Liu, X. Zhang, J. Yang, X. Chen, Y. Gao, Automatic Land-Cover Mapping using Landsat Time-Series Data based on Google Earth Engine, J. Remote Sens., 11, 3023 (2019) [CrossRef] [Google Scholar]
  11. A. Bannari, D. Morin, F. Bonn, A.R. Huete, A review of vegetation indices, J. Remote Sens. Rev., 13, 95-120 (1995) [CrossRef] [Google Scholar]
  12. D. Kong, Y. Zhang, X. Gu, D. Wang, A robust method for reconstructing global MODIS EVI time series on the Google Earth Engine, ISPRS J. Photogramm. Remote Sens. 155, 13-24 (2019) [CrossRef] [Google Scholar]
  13. G. Foody, Book Review: Classification methods for remotely sensed data, 27 (2003) [Google Scholar]
  14. K. Khakimova, I. Musaev, A. Khamraliev, Basics of Atlas Mapping Optimization in the Fergana Valley, ed L Foldvary and I Abdurahmanov, J. E3S Web Conf., 227, 02003 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  15. R. Oymatov, S. Safayev, Creation of a complex electronic map of agriculture and agro-geo databases using GIS techniques, J. E3S Web of Conferences, 258 (2021) [Google Scholar]
  16. D. Bazarov, S. Umarov, R. Oymatov, F. Uljaev, K. Rayimov, I. Raimova, Hydraulic parameters in the area of the main dam intake structure of the river, J. E3S Web of Conferences, 264 (2021) [Google Scholar]
  17. A. Babajanov, R. Abdiramanov, I. Abdurahmanov, U. Islomov, Advantages of formation non-agricultural land allocation projects based on GIS technologies, J. E3S Web Conf., 227 (2021) [Google Scholar]
  18. I. Abdurahmanov. Assessment of NDVI and SAVI vegetation indices potential to monitor grazing impact in a rangeland ecosystem, Int. J. Geoinformatics, 12, 9-15 (2016) [Google Scholar]
  19. M. Lehoczky, Z. Abdurakhmonov, Present software of photogrammetric processing of digital images, J. E3S Web of Conferences, 227, 04001 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  20. S. Egamberdiev, M. Kholmurotov, E. Berdiev, T. Ochilov, R. Oymatov, Z. Abdurakhmonov, Determination of substrate composition, light, and temperature for interior plant growth, ed A Zheltenkov and A Mottaeva, J. E3S Web Conf., 284, 03015 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  21. Kh. Amankulova, N. Farmonov, U. Mukhtorov, M. Lászlóa, Sunflower crop yield prediction by advanced statistical modeling using satellite-derived vegetation indices and crop phenology, J. Geocarto International, 38 (1), 2197509 (2023) [CrossRef] [Google Scholar]
  22. U. Mukhtorov, I. Aslanov, J. Lapasov, D. Eshnazarov, M. Bakhriev, Creating Fertilizer Application Map via Precision Agriculture Using Sentinel-2 Data in Uzbekistan, 15th International Scientific Conference on Precision Agriculture and Agricultural Machinery Industry, 575, 1915-1921 (2023) [Google Scholar]
  23. S. Khasanov, R. Oymatov, R. Kulmatov, Canopy temperature: as an indicator of soil salinity (a casestudy in Syrdarya province, Uzbekistan), J. IOP Conf. Series: Earth and Environmental Science, 1142, 012109 (2023) [CrossRef] [Google Scholar]
  24. S. Egamberdiev, M Kholmurotov, E. Berdiev, T. Ochilov, R. Oymatov, Z. Abdurakhmonov, Determination of substrate composition, light, and temperature for interior plant growth, J. E3S Web of Conferences, 284, 03015 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  25. N. Teshaev, B. Mamadaliyev, A. Ibragimov, S. Khasanov, The soil-adjusted vegetation index for soil salinity assessment in Uzbekistan, Conference: GI support of sustainable development of territories: Proceedings of the International conference (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.