Open Access
Issue |
E3S Web Conf.
Volume 387, 2023
International Conference on Smart Engineering for Renewable Energy Technologies (ICSERET-2023)
|
|
---|---|---|
Article Number | 01012 | |
Number of page(s) | 14 | |
Section | Electronic and Electical Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202338701012 | |
Published online | 15 May 2023 |
- A.R. Abdulmunem, Samin P.M., Rahman H.A., Hussien H.A., and Mazali I.I. (2020) Enhancing PV cell’s electrical efficiency using phase change material with copper foam matrix and multi-walled carbon nanotubes as a passive cooling method. Renew Energy 160:663–675. https://doi.org/10.1016/j.renene.2020.07.037. [CrossRef] [Google Scholar]
- S. Abo-Elfadl, Yousef M.S., and Hassan H. (2020a) Energy, exergy, economic and environmental assessment of using different passive condenser designs of the solar distiller. Process Saf Environ Prot 148:302–312. https://doi.org/10.1016Zj.psep.2020.10.022 [Google Scholar]
- R. Abdul, and Naim bin Tajuddin (2021) Power Generation Improvement using Active Water Cooling for Photovoltaic (PV) Panel. Fourth international conference on electrical, computer and communication Technologies 978-1-6654-1480-7/2. https://doi.org/10.1109/ICECCT52121.2021.9616889 [Google Scholar]
- N. Abd Rahman. Muhammad, Haw L. C., et al. (2022) Field study of hybrid photovoltaic thermal and heat pump system for a public hospital in the tropics. Case Studies in Thermal Engineering 30 101722 https://doi.org/10.1016/j.csite.2021.101722. [CrossRef] [Google Scholar]
- A.H.A. Al-Waeli, Sopian K., Chaichan M.T., Kazem H.A., Ibrahim A., et al. (2017) Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: an experimental study. Energy Convers Manag 151:693–708. https://doi.org/10.1016/j.enconman.2017.09.032. [CrossRef] [Google Scholar]
- A.R. Amelia, Irwan Y.M., Irwanto, M., Leow W.Z., Gomes, N., Safwati, I., Anuar M.A.M. (2016) Cooling on the photovoltaic panel using forced air convection induced by DC fan. Int J Electr Comput Eng 6:526–534. https://doi.org/10.11591/ijece.v6i1.9118. [Google Scholar]
- H. M. Andrew, Pierre, F., 2015. The origin and limits of the near proportionality between climate warming and cumulative CO2Emissions. J. Clim. 28, 4217–4230. [CrossRef] [Google Scholar]
- H. Bahaidarah, Subhan A., Gandhidasan P., Rehman S. (2013) Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions. Energy 59:445–453. https://doi.org/10.1016/j.energy.2013.07.050 [CrossRef] [Google Scholar]
- G. Colt, (2016). Performance evaluation of a PV panel by rear surface water active cooling. 2016 Int Conf Appl Theor Electr ICATE 2016 - Proc. 1–5. https://doi.org/10.1109/ICATE.2016.7754634. [Google Scholar]
- N. Elminshawy, El Ghandour M., Gad H.M., El-Damhogi D.G., El Nahhas K., Addas M.F. (2019) The performance of a buried heat exchanger system for PV panel cooling under elevated air temperatures. Geothermics 82:7–15. https://doi.org/10.1016/j.geothermics.2019.05.012. [CrossRef] [Google Scholar]
- K. Giorgos, (2008). Droughts. Annu. Rev. Environ. Resour. 33, 85–118. [CrossRef] [Google Scholar]
- M. Govind, Murali, S. et al. (2022) Experimental investigations on unglazed photovoltaic-thermal (PVT) system using water and nanofluid cooling medium. Renewable Energy 188:986e996 https://doi.org/10.1016Zj.renene.2022.02.080. [Google Scholar]
- A. Hakeem, Hilal H. et al. (2022). Enhancing performance of PV module using water flow through porous media. Case Studies in Thermal Engineering 34:102000. https://doi.org/10.1016/j.csite.2022.102000. [CrossRef] [Google Scholar]
- A. Hadipour et al. (2021) An efficient pulsed-spray water cooling system for photovoltaic panels: Experimental study and cost analysis. Renewable Energy 164:867–875. https://doi.org/10.1016/j.renene.2020.09.021. [CrossRef] [Google Scholar]
- H. Hassan, Yousef S.M., Abo-Elfadl S. (2021) Energy, exergy, economic and environmental assessment of double pass V-corrugated-perforated finned solar air heater at different air mass ratios. Sustain Energy Technol Assessments 43:100936. https://doi.org/10.1016/j.seta.2020.100936. [CrossRef] [Google Scholar]
- A. Hasan, Mc Cormack S.J., Huang M.J., Sarwar J., Norton B., (2015) Increased photovoltaic performance through temperature regulation by phase change materials: Materials comparison in different climates, Sol. Energy 115 (2015) 1264–1276, https://doi.org/10.1016/j.solener.2015.02.003. [CrossRef] [Google Scholar]
- M. Jasim Othman et al. (2022) Closed-loop aluminum oxide nanofluid cooled photovoltaic thermal collector energy and exergy analysis, an experimental study. Journal of Energy Storage 50: 104654. https://doi.org/10.1016/j.est.2022.104654. [CrossRef] [Google Scholar]
- A. Kabeel, Abdelgaied M., Sathyamurthy R. (2019) A comprehensive investigation of the optimization cooling technique for improving the performance of PV module with reflectors under Egyptian conditions. Sol Energy 186:257–263. https://doi.org/10.1016/j.solener.2019.05.019. [CrossRef] [Google Scholar]
- J. Kim, Park S.-H., Kim J.-T. (2014) Experimental performance of a photovoltaic-thermal air collector. Energy Procedia 48:888–894. https://doi.org/10.1016/j.egypro.2014.02.102. [CrossRef] [Google Scholar]
- S. Krauter (2004) Increased electrical yield via water flow over the front of photovoltaic panels. Sol Energy Mater Sol Cells 82:131–137. https://doi.org/10.1016/j.solmat.2004.01.011. [CrossRef] [Google Scholar]
- R. Kumar, Rosen M.A. (2011) Performance evaluation of a double pass PVT solar air heater with and without fins. Appl Therm Eng 31:1402–1410. https://doi.org/10.1016/j.applthermaleng.2010.12.037. [CrossRef] [Google Scholar]
- M. Ozgoren, M.H. Aksoy, C. Bakir, S. Dogan. (2013). Experimental performance investigation of photovoltaic/thermal (PV-T) system, EPJ Web Conf. 45, https://doi.org/10.1051/epjconf/20134501106. [Google Scholar]
- H. Mahamudul et al., (2014) Development of a temperature regulated photovoltaic module using phase change material for Malaysian weather condition, J. Optoelectronics Adv. Mater. -Rapid Commun. 8 (2014) 1243–1245 [Google Scholar]
- S.J. McCormack, Huang M.J., Norton, B., (2010). Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics, Sol. Energy 84 (2010) 1601–1612, https://doi.org/10.1016/j.solener.2010.06.010. [CrossRef] [Google Scholar]
- C. Misiopecki et al. (2012). Arildgustavsen and berit time, cooling of PV panels by natural convection. ZEB Project report. Norwegian University of Science and Technology; https://sintef.brage.unit.no/sintef-xmlui/bitstream/handle/11250/2379047/ZEBbrapport_no_06.pdf?sequence1/43. [Google Scholar]
- S. Odeh, Behnia M. (2009) Improving photovoltaic module efficiency using water cooling. Heat Transf Eng 30:499–505. https://doi.org/10.1080/01457630802529214. [CrossRef] [Google Scholar]
- R. Rajasekar et al. (2019) Efficiency of solar PV panel by the application of coconut fibres saturated by earthen clay pot water. Environmental Technology 42:3, 358–365. https://doi.org/10.1080/09593330.2019.1629181. [Google Scholar]
- A. Sahay, Sethi V.K., Tiwari A.C., Pandey M. (2015) A review of solar photovoltaic panel cooling systems with special reference to ground coupled central panel cooling system (GC-CPCS). Renew Sustain Energy Rev 42:306–312. https://doi.org/10.1016/j.rser.2014.10.009. [CrossRef] [Google Scholar]
- U. Sajjad, Amer M., Ali H.M., Dahiya A., Abbas N. (2019) Cost effective cooling of photovoltaic modules to improve efficiency. Case Stud Therm Eng 14:100420. https://doi.org/10.1016/j.csite.2019.100420. [CrossRef] [Google Scholar]
- B. Saria, Sajjad, A., Jacimaria, B., (2018). Analyzing land and water requirements for solar deployment in the southwestern United States. Renew. Sust. Energ. Rev. 82, 3288–3305. [CrossRef] [Google Scholar]
- M. Shahverdian, S. Ali, S. Hoseyn (2021) Water-energy nexus performance investigation of water flow cooling as a clean way to enhance the productivity of solar photovoltaic modules. Journal of Cleaner Production. 312 127641. https://doi.org/10.1016/j.jclepro.2021.127641. [CrossRef] [Google Scholar]
- S. Rohan, K. Patel Shubham, (2021) 8th Uttar Pradesh section international conference on electrical and electronics and computer engineering. IEEE. 978-1-6654-0962-9-9-21 https://doi.org/10.1109/UPCON52273.2021.9667593. [Google Scholar]
- B. Singh, Goyal S.K., Kumar P. (2021) Solar PV cell materials and technologies: analyzing the recent developments. Mater Today Proc 43:2843–2849. https://doi.org/10.1016/j.matpr.2021.01.003. [CrossRef] [Google Scholar]
- A. Suwono, Pratama F.Y., (2016) Improving photovoltaics performance byusing yellow petroleum jelly as phase change material, Int. J. Low-Carbon Technol. 11 (2016) 333–337, https://doi.org/10.1093/ijlct/ctu033. [CrossRef] [Google Scholar]
- R. Talebnejad et al. (2022) A new cooling method for photovoltaic panels using brine from reverse osmosis units to increase efficiency and improve productivity. Energy Conversion and Management 251: 115031. https://doi.org/10.1016/j.enconman.2021.115031 [CrossRef] [Google Scholar]
- Y. Tripanagnostopoulos, Themelis P. (2010) Natural flow air cooled photovoltaics. AIP Conf Proc 1203:1013–1018. https://doi.org/10.1063/L3322300. [CrossRef] [Google Scholar]
- W. Luo, Y.S. Khoo, P. Hacke, V. Naumann, D. Lausch, S.P. Harvey, J.P. Singh, J. Chai, Y. Wang, A.G. Aberle, S. Ramakrishna, (2017) Potential-induced degradation in photovoltaic modules: a critical review, Energy Environ. Sci. 10 (1) (2017) 43–68, https://doi.org/10.1039/C6EE02271E. [CrossRef] [Google Scholar]
- Wu S.-Y., Chen, C., Xiao, L. (2018) Heat transfer characteristics and performance evaluation of water-cooled PVT system with cooling channel above PV panel. Renew Energy 125: 936–946. [CrossRef] [Google Scholar]
- H. N. Xu Wang, Zhang, C., Qu, Z., Karimi, F. (2021) Energy conversion performance of a PVT-PCM system under different thermal regulation strategies. Energy Convers Manag 229: 113660. [CrossRef] [Google Scholar]
- F. Yesildal, Ozakin Ahmet Numan, Kenan Yakut (2022) Optimization of operational parameters for a photovoltaic panel cooled by spray cooling. Engineering Science and Technology, an International Journal 25:100983. https://doi.org/10.1016/j.jestch.2021.04.002. [CrossRef] [Google Scholar]
- G. Zanlorenzi, Szejka A.L., Junior O.C. (2018) Hybrid photovoltaic module for efficiency improvement through an automatic water-cooling system: a prototype case study. J Clean Prod 196: 535–546. [CrossRef] [Google Scholar]
- A. Zubeer Swar, Ali Omar Mohammed (2022) Experimental and numerical study of low concentration and water- cooling effect on PV module performance. Case Studies in Thermal Engineering 34, 102007. https://doi.org/10.1016/j.csite.2022.102007. [CrossRef] [Google Scholar]
- A. Baloch, Bahaidarah H.M.S., Gandhidasan P., Al-Sulaiman F.A. (2015) Experimental and numerical performance analysis of a converging channel heat exchanger for PV cooling. Energy Convers Manag 103:14–27. https://doi.org/10.1016/j.enconman.2015.06.018. [CrossRef] [Google Scholar]
- H. Teo, Lee P.S., Hawlader M.N., (2012) An active cooling system for photovoltaic modules. Appl Energy 90:309–315. https://doi.org/10.1016/j.apenergy.2011.01.017. [CrossRef] [Google Scholar]
- Y. Khanjari et al. (2016) Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system Energy Conversion and Management 122 (2016) 263–278. http://dx.doi.org/10.1016/j.enconman.2016.05.083 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.