Open Access
Issue
E3S Web Conf.
Volume 389, 2023
Ural Environmental Science Forum “Sustainable Development of Industrial Region” (UESF-2023)
Article Number 01035
Number of page(s) 15
Section Materials Science Innovations, Green Chemistry and Emission Reduction
DOI https://doi.org/10.1051/e3sconf/202338901035
Published online 31 May 2023
  1. A. Lutonin, J. Shklyarskiy, Proceedings of the E3S Web of Conf. 266, 04001 (2021) [CrossRef] [EDP Sciences] [Google Scholar]
  2. K. Holkar, L.M. Waghmare, Internat. J. of control and automation 3, 47–63 (2010) [Google Scholar]
  3. I. Brigadnov, A. Lutonin, K. Bogdanova, Symmetry 15 (2023). https://doi.org/10.3390/sym15020344 [CrossRef] [Google Scholar]
  4. C. Yapar, et.al., Real-time outdoor localization using radio maps: A deep learning approach. arXiv preprint arXiv:2106.12556 (2021) [Google Scholar]
  5. W. Xu, et.al., IEEE Transactions on Robotics, 2053–2073 (2022) [Google Scholar]
  6. V. Kakani, et.al., J. of Agriculture and Food Research 2, 100033 (2020) [CrossRef] [Google Scholar]
  7. D. Sankowski, J. Nowakowski, World Scientific 3 (2014) [Google Scholar]
  8. H. Tian, et.al., Inf. Processing in Agriculture 7, 1–19 (2020) [Google Scholar]
  9. M. Bertolini, et.al., Expert Systems with Applications 175, 114820 (2021) [CrossRef] [Google Scholar]
  10. P. Kashyap, P. Kashyap, Industrial applications of machine learning. Machine Learning for Decision Makers: Cognitive Computing Fundamentals for Better Decision Makingpp. 189–233 (2017) [Google Scholar]
  11. O.I. Abiodun, et.al., Heliyon 4, e00938 (2018) [CrossRef] [PubMed] [Google Scholar]
  12. H. Zhou, et.al., Applied Intelligence 50, 1657–1672 (2020) [CrossRef] [Google Scholar]
  13. F. Chen, M.Y. Wang, IEEE Robotics & Automation Magazine 27, 27–43 (2020) [CrossRef] [Google Scholar]
  14. Y. Takishima, et.al., ECS J. of Solid State Sci. and Technology 10, 037002 (2021) [CrossRef] [Google Scholar]
  15. N. Elango, A.A.M. Faudzi, The Int. J. of Adv. Manuf. Tech. 80, 1027–1037 (2015) [CrossRef] [Google Scholar]
  16. H. Wang, et.al., Surgical endoscopy 31, 3152–3158 (2017) [CrossRef] [PubMed] [Google Scholar]
  17. M. Runciman, A. Darzi, G.P. Mylonas, Soft robotics 6, 423–443 (2019) [CrossRef] [PubMed] [Google Scholar]
  18. L.A. Zakharov, D.A. Martyushev, I.N. Ponomareva, J. of Min. Inst. 253, 23–32 (2022) [Google Scholar]
  19. Y.L. Zhukovskiy, et.al., Sustainability 13 (2021). https://doi.org/10.3390/su132413801 [CrossRef] [Google Scholar]
  20. A. Romashev, T. Iakovleva, G. Mashevsky, Mining informational and analytical bulletin (scientific and technical journal) 6, 175–188 (2022) [Google Scholar]
  21. E. Luis, H.M. Pan, S.L. Sing, et.al., 3D Printing and Additive Manufacturing 6, 319–332 (2019) [CrossRef] [Google Scholar]
  22. G. Nagymate, R.M. Kiss, Recent Innovations in Mechatronics 5, 1–9 (2018) [Google Scholar]
  23. O. Kramer, O. Kramer, K-nearest neighbors. Dimensionality reduction with unsupervised nearest neighbors, pp. 13–23 (2013) [Google Scholar]
  24. D.T. Larose, C.D. Larose, K-nearest neighbor algorithm (2014) [Google Scholar]
  25. M.Y. Zemenkova, et.al., Journal of Mining Institute 258, 933–944 (2022) [CrossRef] [Google Scholar]
  26. A.K. Alanazi, et.al., Applied Sciences 12 (2022). https://doi.org/10.3390/app12031336. [Google Scholar]
  27. E. Ushakov, T. Aleksandrova, A. Romashev, Neural network modeling methods in the analysis of the processing plant’s indicators. In Proceedings of the International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies EMMFT 2019: Volume 2. Springer, pp. 36–45 (2021) [Google Scholar]
  28. S.I. Amari, Neurocomputing 5, 185–196 (1993) [CrossRef] [Google Scholar]
  29. E.V. Filippov, et.al., J. of Mining Institute 258, 924–932 (2022) [CrossRef] [Google Scholar]
  30. S. Islamov, et.al., Symmetry 13 (2021). https://doi.org/10.3390/sym13071293 [CrossRef] [Google Scholar]
  31. J. Montiel, et. al., The Journal of Machine Learning Research 22, 4945–4952 (2021) [Google Scholar]
  32. I. Vasilev, et.al., Python Deep Learning: Exploring deep learning techniques and neural network architectures with Pytorch, Keras, and TensorFlow (Packt Publishing Ltd, 2019) [Google Scholar]
  33. D. Kim, et. al., Plos one 16, e0246102 (2021) [CrossRef] [PubMed] [Google Scholar]
  34. W. Sun, et.al., IEEE Robotics and Automation Letters 7, 6862–6869 (2022) [CrossRef] [Google Scholar]
  35. R. Sultanbekov, et.al., Energies 14 (2021). https://doi.org/10.3390/en14248422 [CrossRef] [Google Scholar]
  36. L. Brilliant, et.al., Oil Industry Journal 2022, 48 (2022) [Google Scholar]
  37. A.O. Romashev, et.al., Journal of Mining Institute 256, 677–685 (2022) [CrossRef] [Google Scholar]
  38. Makhovikov, A. B., Kryltsov, S. B., Matrokhina, K. V., Trofimets, V. Ya. Secured communication system for a metallurgical company. Tsvetnye Metally. 2023. No. 4. pp. 5–13. DOI: 10.17580/tsm.2023.04.01. [Google Scholar]
  39. Matrokhina, K. V., Trofimets, V. Y., Mazakov, E. B., Makhovikov, A.B., & Khaykin, M. M. (2023). Journal of Mining Institute, 259, 112-124. https://doi.org/10.31897/PMI.2023.3 [CrossRef] [Google Scholar]
  40. Matrokhina, K.V., Makhovikov, A.B., Trofimets, E.N. E3S Web of Conferences, 2021, 266, 09001. [CrossRef] [EDP Sciences] [Google Scholar]
  41. Kryltcov, S., Makhovikov, A., Korobitcyna, M. Symmetry, 2021, 13(3), 460. [CrossRef] [Google Scholar]
  42. Samylovskaya, E., Makhovikov, A., Lutonin, A., Medvedev, D., Kudryavtseva, R.-E. Resources, 2022, 11(3), 29. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.