Open Access
Issue
E3S Web of Conf.
Volume 389, 2023
Ural Environmental Science Forum “Sustainable Development of Industrial Region” (UESF-2023)
Article Number 07023
Number of page(s) 19
Section IT in Environmental Science
DOI https://doi.org/10.1051/e3sconf/202338907023
Published online 31 May 2023
  1. I. Agur, S.M. Peria, C. Rochon, International Monetary Fund Special Issue on COVID-19, 1–13 (2020) [Google Scholar]
  2. Pumsirirat, L. Yan, International Journal of Advanced Computer Science and Applications 9, 01 (2018) [CrossRef] [Google Scholar]
  3. M.J. Alam, M.I. Kamrul, S.M. Zia Ur Rashid, S.Z. Rashid, Engineering and Technology (ICISET), 451-454 (2018) DOI: 10.1109/ICISET.2018.8745647 [Google Scholar]
  4. S.W. Albrecht, C.O. Albrecht, C.C. Albrecht, M.F. Zimbelman, Fraud Examination (6th ed.) (Cengage Learning, 2018) [Google Scholar]
  5. B.C. Amanze, H.C. Inyiama, M.O. Onyesolu, International Journal of Computer Sciences and Engineering 6(6), 1333-1343 (2018) [CrossRef] [Google Scholar]
  6. R.B. Asha, S.KR. Kumar, Credit card fraud detection using artificial neural network. Global Transitions Proceedings 2(1), 35–41 (2021) DOI: https://doi.org/10.1016/j.gltp.2021.01.006 [Google Scholar]
  7. S.M.S. Askari, M.A. Hussain, Journal of Information Security and Applications 52, 102469 (2020) DOI: https://doi.org/10.1016/j.jisa.2020.102469 [CrossRef] [Google Scholar]
  8. Association of Certified Fraud Examiners [ACFE]. Report to the Nations (2020) DOI: https://acfepublic.s3-us-west-2.amazonaws.com/2020-Report-to-the-Nations.pdf [Google Scholar]
  9. J.O. Awoyemi, A.O. Adetunmbi, S.A. Oluwadare, Credit card fraud detection using machine learning techniques: A comparative analysis. 2017 International Conference on Computing Networking and Informatics (ICCNI). Published (2017) DOI: https://doi.org/10.1109/iccni.2017.8123782 [Google Scholar]
  10. B. Wiese, C. Omlin, Credit Card Transactions, Fraud Detection, and Machine Learning: Modelling Time with LSTM Recurrent Neural Networks. Innovations in Neural Information Paradigms and Applications (2009) DOI: 10.1007/978-3-642-04003-0_10 [Google Scholar]
  11. L.M. Bahsin, Wulfenia Journal 23(2) (2016) [Google Scholar]
  12. R. Banerjee, G. Bourla, S. Chen, M. Kashyap, S. Purohit, Comparative Analysis of Machine Learning Algorithms through Credit Card Fraud Detection. 2018 IEEE MIT Undergraduate Research Technology Conference (URTC). Published (2018) DOI: https://doi.org/10.1109/urtc45901.2018.9244782 [Google Scholar]
  13. T.K. Behera, S. Panigrahi, Advances in Intelligent Systems and Computing, 835–843 (2017) DOI: https://doi.org/10.1007/978-981-10-3874-7_79 [Google Scholar]
  14. S.M. Bragg, Fraud Examination: Second Edition: Prevention, Detection, and Investigation. AccountingTools, Inc. (2019) [Google Scholar]
  15. C. Chukwuneke, “Credit card fraud detection system using intelligent agents and enhanced security features,” 06 2018. [Google Scholar]
  16. Carneiro, N., Figueira, G., & Costa, M. (2017). A data mining-based system for credit-card fraud detection in e-tail. Decision Support Systems, 95, 91–101. https://doi.org/10.1016/j.dss.2017.01.002 [Google Scholar]
  17. Carvajal, G., Maucec, M., & Cullick, S. (2018). Components of Artificial Intelligence and Data Analytics. Intelligent Digital Oil and Gas Fields, 101–148. https://doi.org/10.1016/b978-0-12-804642-5.00004-9 [Google Scholar]
  18. Castelli, M., Manzoni, L., & Popovic, A. (2016). An Artificial Intelligence System to Predict Quality of Service in Banking Organizations. Computational Intelligence and Neuroscience, 2016. [Google Scholar]
  19. Chong & Steve, K, H. (2016). Cybercrime Precursors: Towards a Model of Offender Resources. Australian National University, Thesis. https://openresearch- repository.anu.edu.au/handle/1885/107344 [Google Scholar]
  20. Columbus, L. (2020, May 19). How E-Commerce’s Explosive Growth Is Attracting Fraud. Forbes. https://www.forbes.com/sites/louiscolumbus/2020/05/18/how-ecommerces- explosive-growth-is-attracting-fraud/?sh=6e4084cf6c4b [Google Scholar]
  21. Cressey, D. (1953). Other People’s Money: A Study in the Social Psychology of Embezzlement, Free press, Glencoe, IL. [Google Scholar]
  22. D. Dighe, S. Patil, and S. Kokate, “Detection of credit card fraud transactions using machine learning algorithms and neural networks: A comparative study,” 08 2018, pp. 1–6. [Google Scholar]
  23. Das, P. K., Tripathy, H. K., & Yusof, M. S. A. (2021). Privacy and Security Issues in Big Data: An Analytical View on Business Intelligence (Services and Business Process Reengineering) (1st ed. 2021 ed.). Springer. [Google Scholar]
  24. de Sá, A. G., Pereira, A. C., & Pappa, G. L. (2018). A customized classification algorithm for credit card fraud detection. Engineering Applications of Artificial Intelligence, 72, 21–29. https://doi.org/10.1016/j.engappai.2018.03.011 [CrossRef] [Google Scholar]
  25. Deng, W. Huang, Z. Zhang J. and Xu, J. (2021). A Data Mining Based System For Transaction Fraud Detection. IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE), 2021, pp. 542-545, doi: 10.1109/ICCECE51280.2021.9342376. [Google Scholar]
  26. Denis, D. J. (2018). SPSS Data Analysis for Univariate, Bivariate, and Multivariate Statistics (1st ed.). Wiley. [CrossRef] [Google Scholar]
  27. disruptive technology. (n.d.). Oxford Reference. Retrieved September 1, 2021, from https://www.oxfordreference.com/view/10.1093/oi/authority.20110810104753313 [Google Scholar]
  28. Dutta, S. Gupta, A. K. & Narayan, N. (2017). Identity Crime Detection Using Data Mining. 3rd International Conference on Computational Intelligence and Networks (CINE), pp. 1-5, doi: 10.1109/CINE.2017.18. [Google Scholar]
  29. El Naby, A. A., El-Din Hemdan, E., & El-Sayed, A. (2021). Deep Learning Approach for Credit Card Fraud Detection. 2021 International Conference on Electronic Engineering (ICEEM). Published. https://doi.org/10.1109/iceem52022.2021.9480639 [Google Scholar]
  30. Fernando, (2020). [Google Scholar]
  31. https://repositorio.yachaytech.edu.ec/bitstream/123456789/120/1/ECMC0015.pdf [Google Scholar]
  32. Goyal, R. & Manjhvar, A, K., (2020). Review on Credit Card Fraud Detection using Data Mining Classification Techniques & Machine Learning Algorithms.. IJRAR - International Journal of Research and Analytical Reviews (IJRAR), E-ISSN 2348-1269, P- ISSN 2349-5138, Volume.7, Issue 1, Page No pp.972-975: https://ssrn.com/abstract=3677692 [Google Scholar]
  33. Huang, J. (2020). Credit Card Transaction Fraud Using Machine Learning Algorithms. [Google Scholar]
  34. Semantic Scholar, DOI:10.2991/icesed-19.2020.14 [Google Scholar]
  35. ICAEW. (2018, September). Artificial intelligence and the future of accountancy. Global Accountancy Advance. https://www.icaew.com/- [Google Scholar]
  36. /media/corporate/files/technical/technology/thought-leadership/artificial-intelligence- report.ashx [Google Scholar]
  37. Issa, H., Sun, T., & Vasarhelyi, M. A. (2016). Research ideas for artificial intelligence in auditing: The formalization of audit and workforce supplementation. Journal of Emerging Technologies in Accounting, 13(2), 1–20. https://doi.org/10.2308/jeta-10511 [CrossRef] [Google Scholar]
  38. Jiang, C., Song, J., Liu, G., Zheng, L., & Luan, W. (2018). Credit Card Fraud Detection: A Novel Approach Using Aggregation Strategy and Feedback Mechanism. IEEE Internet of Things Journal, 1–1. doi:10.1109/jiot.2018.2816007 [Google Scholar]
  39. John, S., Anele, C., Kennedy, O. O., Olajide, F., & Kennedy, C. G. (2016). Realtime Fraud Detection in the Banking Sector Using Data Mining Techniques/Algorithm. 2016 International Conference on Computational Science and Computational Intelligence (CSCI). Published. https://doi.org/10.1109/csci.2016.0224 [Google Scholar]
  40. Kültür, Y., & ÇAğlayan, M. U. (2016). Hybrid approaches for detecting credit card fraud. [Google Scholar]
  41. Expert Systems, 34(2), e12191. https://doi.org/10.1111/exsy.12191 [Google Scholar]
  42. Kumar, M. S., Soundarya, V., Kavitha, S., Keerthika, E., & Aswini, E. (2019). Credit Card Fraud Detection Using Random Forest Algorithm. 2019 3rd International Conference on Computing and Communications Technologies (ICCCT). Published. https://doi.org/10.1109/iccct2.2019.8824930 [Google Scholar]
  43. Kumar, P., & Iqbal, F. (2019). Credit Card Fraud Identification Using Machine Learning Approaches. 2019 1st International Conference on Innovations in Information and Communication Technology (ICIICT). Published. https://doi.org/10.1109/iciict1.2019.8741490 [Google Scholar]
  44. Larson, G. (2019). How to use AI to fight identity fraud. [Online]. TechBeacon. Available at: https://techbeacon.com/security/how-use-ai-fight-identity-fraud [Accessed 21 Sep 2019]. [Google Scholar]
  45. Lee, N. (2021, February 1). Credit card fraud will increase due to the Covid pandemic, experts warn. CNBC. https://www.cnbc.com/2021/01/27/credit-card-fraud-is-on-the-rise-due-to-covid-pandemic.html [Google Scholar]
  46. Li, Z., Liu, G., Wang, S., Xuan, S., & Jiang, C. (2018). Credit Card Fraud Detection via Kernel- Based Supervised Hashing. 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). Published. https://doi.org/10.1109/smartworld.2018.00217 [Google Scholar]
  47. “Maharjan, A., & Chudal, P. (2020) Comparative Analysis of Algorithms for [Google Scholar]
  48. Credit Card Fraud Detection. KEC Conference. http://kec.edu.np/wp- content/uploads/2020/01/Paper_36.pdf” [Google Scholar]
  49. Mahmud, M. S., Meesad, P., & Sodsee, S. (2016). An evaluation of computational intelligence in credit card fraud detection. 2016 International Computer Science and Engineering Conference (ICSEC). Published. https://doi.org/10.1109/icsec.2016.7859947 [Google Scholar]
  50. Mehndiratta, S. & Gupta, K. (2019). Credit Card Fraud Detection Techniques: A Review. International Journal of Computer Science and Mobile Computing, Vol. 8, Issue. 8, pg.43 [Google Scholar]
  51. 49. https://ijcsmc.com/docs/papers/August2019/V8I8201911.pdf [Google Scholar]
  52. Mishra, S. P., & Kumari, P. (2019). Analysis of Techniques for Credit Card Fraud Detection: A Data Mining Perspective. Advances in Intelligent Systems and Computing, 89–98. https://doi.org/10.1007/978-981-13-9330-3_9 [Google Scholar]
  53. Mittal S., Tyagi S. (2020) Computational Techniques for Real-Time Credit Card Fraud Detection. In: Gupta B., Perez G., Agrawal D., Gupta D. (eds) Handbook of Computer Networks and Cyber Security. Springer, Cham. https://doi.org/10.1007/978-3-030-22277-2_26 [Google Scholar]
  54. Modi, K., & Dayma, R. (2017). Review on fraud detection methods in credit card transactions. 2017 International Conference on Intelligent Computing and Control (I2C2). doi:10.1109/i2c2.2017.8321781 [Google Scholar]
  55. Moody, M. (2019, November 12). How Artificial Intelligence Uncovered Evidence of Fraud. ACFE Insights. https://www.acfeinsights.com/acfe-insights/2018/12/14/how-artificial- intelligence-uncovered-evidence-of-fraud [Google Scholar]
  56. Naqvi, A. (2020). Artificial Intelligence for Audit, Forensic Accounting, and Valuation: A Strategic Perspective (1st ed.). Wiley. [Google Scholar]
  57. Ngai, E., Hu, Y., Wong, Y., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3), 559–569. https://doi.org/10.1016/j.dss.2010.08.006 [CrossRef] [Google Scholar]
  58. Niu, X., Wang, L., & Yang, X. (2019). A Comparison Study of Credit Card Fraud Detection: Supervised versus Unsupervised. ArXiv, abs/1904.10604. [Google Scholar]
  59. Nkomo, B. K., & Breetzke, T. (2020). A conceptual model for the use of artificial intelligence for credit card fraud detection in banks. 2020 Conference on Information Communications Technology and Society (ICTAS). doi:10.1109/ictas47918.2020.23398 [Google Scholar]
  60. Paruchuri, H. (2017). Credit Card Fraud Detection using Machine Learning: A Systematic Literature Review. ABC Journal of Advanced Research, 6(2), 113-120. https://doi.org/10.18034/abcjar.v6i2.547 [CrossRef] [Google Scholar]
  61. PricewaterhouseCoopers. (2020). PwC’s Global Economic Crime and Fraud Survey 2020. [Google Scholar]
  62. PwC. https://www.pwc.com/gx/en/services/forensics/economic-crime-survey.html [Google Scholar]
  63. Prusti, D., & Rath, S. K. (2019). Web service-based credit card fraud detection by applying machine learning techniques. TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). Published. https://doi.org/10.1109/tencon.2019.8929372 [Google Scholar]
  64. Quah, J. T., & Sriganesh, M. (2008). Real-time credit card fraud detection using computational intelligence. Expert Systems with Applications, 35(4), 1721–1732. https://doi.org/10.1016/j.eswa.2007.08.093 [CrossRef] [Google Scholar]
  65. Rambola, R., Varshney, P., & Vishwakarma, P. (2018). Data Mining Techniques for Fraud Detection in Banking Sector. 2018 4th International Conference on Computing Communication and Automation (ICCCA). Published. https://doi.org/10.1109/ccaa.2018.8777535 [Google Scholar]
  66. Rasha, K. & Andrew H. (2012). “The New Fraud Triangle’’: Journal of Emerging Trends In Economics And Management Sciences, Vol.3 (3): Retrieved From Google.Com on September 3, 2014 [Google Scholar]
  67. Razooqi, T., Khurana, P., Raahemifar, K., & Abhari, A. (2016). Credit card fraud detection using fuzzy logic and neural network. SpringSim. DOI:10.22360/springsim.2016.cns.009 [Google Scholar]
  68. Roy, A., Sun, J., Mahoney, R., Alonzi, L., Adams, S., & Beling, P. (2018). Deep learning detecting fraud in credit card transactions. 2018 Systems and Information Engineering Design Symposium (SIEDS). Published. https://doi.org/10.1109/sieds.2018.8374722 [Google Scholar]
  69. Ruankaew, T. (2016). Beyond the fraud diamond. International Journal of Business Management and Economic Research (IJBMER), vol. 7 issue 1, pp. 474-476. [Google Scholar]
  70. Saeed, S, K. (2019). A Fraud-Detection Fuzzy Logic Based System For The Sudanese Financial Sector. Vol 20, No 1. [Google Scholar]
  71. http://journal.sustech.edu/index.php/JECS/article/view/398 [Google Scholar]
  72. Saunders, M. N. K., Lewis. P. Thornhill. A. (2016). Research Methods For Business Students. [Google Scholar]
  73. PEARSON. [Google Scholar]
  74. Save, P., Tiwarekar, P., N., K., & Mahyavanshi, N. (2017). A Novel Idea for Credit Card Fraud Detection using Decision Tree. International Journal of Computer Applications, 161(13), 6–9. https://doi.org/10.5120/ijca2017913413 [Google Scholar]
  75. Sekaran, U. & Bougie, R. (2016) Research Methods for Business: A Skill-Building Approach. [Google Scholar]
  76. 7th Edition, Wiley. [Google Scholar]
  77. Shakya, R,. (2018). Application of Machine Learning Techniques in Credit Card Fraud Detection. UNLV Theses, Dissertations, Professional Papers, and Capstones. 3454. http://dx.doi.org/10.34917/14279175 [Google Scholar]
  78. Sisodia, D. S., Reddy, N. K., & Bhandari, S. (2017). Performance evaluation of class balancing techniques for credit card fraud detection. 2017 IEEE International Conference on Power, Control, Signals, and Instrumentation Engineering (ICPCSI). doi:10.1109/icpcsi.2017.8392219 [Google Scholar]
  79. Sorournejad, S., Zojaji, Z., Atani, R.E., & Monadjemi, A. (2016). A Survey of Credit Card Fraud Detection Techniques: Data and Technique Oriented Perspective. ArXiv, abs/1611.06439. [Google Scholar]
  80. Sorunke & Abayomi, O. (2016). Personal ethics and fraudster motivation: The missing link in fraud triangle and fraud diamond theories. International Journal of Academic Research in Business and Social Sciences, vol. 6 issue 2. [Google Scholar]
  81. Sujana, E., Yasa, I., & Wahyuni, M.A. (2019). Testing of Fraud Diamond Theory Based on Local Wisdom on Fraud Behavior. DOI:10.2991/teams-18.2019.3 [Google Scholar]
  82. Syeda, M., Yan-Qing Zhang & Yi Pan. (2002). Parallel granular neural networks for fast credit card fraud detection. 2002 IEEE World Congress on Computational Intelligence. pp. 572-577 vol.1, doi: 10.1109/FUZZ.2002.1005055. [Google Scholar]
  83. Syeda, M., Yan-Qing Zhang, & Yi Pan. (2002). Parallel granular neural networks for fast credit card fraud detection. 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE’02. Proceedings (Cat. No.02CH37291). doi:10.1109/fuzz.2002.1005055 [Google Scholar]
  84. Taha, A. A., & Malebary, S. J. (2020). An Intelligent Approach to Credit Card Fraud Detection Using an Optimized Light Gradient Boosting Machine. IEEE Access, 8, 25579–25587. https://doi.org/10.1109/access.2020.2971354 [CrossRef] [Google Scholar]
  85. Thennakoon, A., Bhagyani, C., Premadasa, S., Mihiranga, S., & Kuruwitaarachchi, N. (2019). Real-time Credit Card Fraud Detection Using Machine Learning. 2019 9th International Conference on Cloud Computing, Data Science & Engineering (Confluence). Published. https://doi.org/10.1109/confluence.2019.8776942 [Google Scholar]
  86. Tran, P. H., Tran, K. P., Huong, T. T., Heuchenne, C., HienTran, P., & Le, T. M. H. (2018). Real Time Data-Driven Approaches for Credit Card Fraud Detection. Proceedings of the 2018 International Conference on E-Business and Applications - ICEBA 2018. Published. https://doi.org/10.1145/3194188.3194196 [Google Scholar]
  87. Tripathi, K. K., & Pavaskar, M. A. (2012). Survey on Credit Card Fraud Detection Methods. International Journal of Emerging Technology and Advanced Engineering, 2(11). doi=10.1.1.414.3256 [Google Scholar]
  88. Vardhani, P. R., Priyadarshini, Y. I., & Narasimhulu, Y. (2018). CNN Data Mining Algorithm for Detecting Credit Card Fraud. SpringerBriefs in Applied Sciences and Technology, 85–93. doi:10.1007/978-981-13-0059-2_10 [Google Scholar]
  89. Wolfe, D. & Hermanson, D, R. (2004). The fraud diamond: Considering four elements of fraud. The CPA Journal, vol. 74 issue 12, pp. 38-42. [Google Scholar]
  90. Yazici, Y. (2020). Approaches To Fraud Detection On Credit Card Transactions Using Artificial Intelligence Methods. Department of Computer Engineering. https://aircconline.com/csit/papers/vol10/csit101018.pdf [Google Scholar]
  91. Yee, O. S., Sagadevan, S., & Malim, N. H. A. H. (2018). Credit card fraud detection using machine learning as data mining technique. Journal of Telecommunication, Electronic and Computer Engineering, 10(1–4), 23–27. [Google Scholar]
  92. Zareapoor, M., & Shamsolmoali, P. (2015). Application of Credit Card Fraud Detection: Based on Bagging Ensemble Classifier. Procedia Computer Science, 48, 679–685. https://doi.org/10.1016/j.procs.2015.04.201 [CrossRef] [Google Scholar]
  93. Zareapoor, M., Seeja. K.R, S., & Afshar Alam, M. (2012). Analysis on Credit Card Fraud Detection Techniques: Based on Certain Design Criteria. International Journal of Computer Applications, 52(3), 35–42. https://doi.org/10.5120/8184-15 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.