Open Access
Issue
E3S Web Conf.
Volume 391, 2023
4th International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2023)
Article Number 01007
Number of page(s) 23
DOI https://doi.org/10.1051/e3sconf/202339101007
Published online 05 June 2023
  1. Gutberlet, J., & Uddin, S. (2017). Household waste and health risks affecting waste pickers and the environment in low-and middle-income countries. Int J Occup Environ Health, 23(4), 299–310. DOI: 10.1080/10773525.2018.1484996 [CrossRef] [PubMed] [Google Scholar]
  2. Fadhullah, W., Imran, N., & Ismail, S. (2022). Household solid waste management practices and perceptions among residents in the East Coast of Malaysia. BMC Public Health, 22(1). DOI: 10.1186/s12889-021-12274-7 [CrossRef] [PubMed] [Google Scholar]
  3. Adediran, A.A., Sriariyanum, M. (2023). Applicability of Agro-waste materials in the development of aluminium matrix composites for transport structures. Applied Science and Engineering Progress, 16(2), 6634. [Google Scholar]
  4. Babayemi, J., & Dauda, K. (2009). Evaluation of solid waste generation, categories and disposal options in developing countries: A case study of Nigeria. Journal of Applied Science and Environmental Management, 13(8), 83–88. Retrieved from http://www.bioline.org.br/ja [Google Scholar]
  5. Abdel-Shafy, H., & Mansour, M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum, 27(4), 1275–1290. DOI: 10.1016/j.ejpe.2018.07.003 [CrossRef] [Google Scholar]
  6. Jamila, I. (2018). Assessment of solid waste disposal system in Jimeta, Adamawa State, Nigeria. British Journal of Environmental Science, 7(1), 43–52. [Google Scholar]
  7. Freepick. (2022). Waste Materials Categorization. Retrieved from https://www.freepik.com/search?format=search&query=waste%20materials%20categorization [Google Scholar]
  8. Ncube, L., Ude, A., Ogunmuyiwa, E., Zulkifli, R., & Beas, I. (2021). An Overview of Plastic Waste Generation and Management in Food Packaging Industries. Recycling, 6, 12. DOI: 10.3390/recycling6010012 [CrossRef] [Google Scholar]
  9. Brubaker, S. (2007). Trends in the world aluminum industry. The John Hopkins Press for Resources for the Future. Retrieved from http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALGEODEBRGM732213190 [Google Scholar]
  10. Heimann, R. (2010). Classic and advanced ceramics: from fundamentals to applications. Germany: John Wiley & Sons. [CrossRef] [Google Scholar]
  11. Pech-Canul, M., Escalera-Lozano, R., Pech-Canul, M., Rendón-Angeles, J., & López-Cuevas, J. (2015). Degradation processes in Al/SiCp/MgAl2O4 composites prepared from recycled aluminum with fly ash and rice hull ash. Materials and Corrosion, 58, 833–840. DOI: 10.1002/maco.200704067 [CrossRef] [Google Scholar]
  12. Nwosu, A., & Chukwueloka, H. (2020). A review of solid waste management strategies in Nigeria. Journal of Mineral and Earth Science, 10(6), 132–143. doi: 10.7176/JEES/10-6-11 [Google Scholar]
  13. Sato, A., & Mehrabian, R. (1976). Aluminum matrix composites: Fabrication and properties. Metallurgical and Materials Transactions B 7, 443–451. DOI: 10.1007/BF02652716 [CrossRef] [Google Scholar]
  14. Dwivedi, U., Verma, S., Choubey, R., & Hashmi, S. (2023). Chapter 14: Utilization of waste glass fiber in polymer composites. In: Advanced Materials from Recycled Waste. DOI: 10.1016/B978-0-323-85604-1.00008-1 [Google Scholar]
  15. Gireesh, C., Prasad, K., Ramji, K., & Vinay, P. (2018). Mechanical characterization of aluminium metal matrix composite reinforced with Aloe vera powder. Materials Today: Proceedings, 5, 3289–3297. DOI: 10.1016/j.matpr.2017.11.571 [CrossRef] [Google Scholar]
  16. Aigbodion, V. (2019). Bean pod ash nanoparticles are a promising reinforcement for aluminium matrix biocomposites. J. Mater. Res. Technol. 8, 6011.doi.org/DOI: 10.1016/j.jmrt.2019.09.075 [CrossRef] [Google Scholar]
  17. Alaneme, K.K., Eze, H.I., & Bodunrin, M.O. (2015). Corrosion behaviour of groundnut shell ash and silicon carbide hybrid reinforced Al-Mg-Si alloy matrix composites in 3.5% NaCl and 0.3 MH 2SO4 solutions. Leonardo Electronic Journal of Practices and Technologies, 26, 129–146. DOI: 10.1016/j.jksues.2016.01.001 [Google Scholar]
  18. Ikubanni, P., Oki, M., & Adeleke, A. (2020). A review of ceramic/bio-based hybrid reinforced aluminium matrix composites. Cogent Engineering, 7, 1–19. DOI: 10.1080/23311916.2020.1727167 [Google Scholar]
  19. Li, H., & Ebrahimi, F. (2013). Synthesis and characterization of electrodeposited nanocrystalline nickel-iron alloys. Materials Science and Engineering A-347, 93–101. DOI: 10.1016/S0921-5093(02)00586-5 [Google Scholar]
  20. Bose, A., Camus, G., German, R., Duquette, D., & Stoloff, N. (2013). Influence of long-range order on tensile properties of Ni3Fe and Ni3Fe-Y2O3 composites. Journal of Materials Research, 8, 430–437. DOI: 10.1557/JMR.1993.0430 [CrossRef] [Google Scholar]
  21. Karayannis, V., & Sotiriou, C. (2016). Composites from scrap? The future could be bright for MMCs. Metal Powder Report 61. DOI: 10.1016/S0026-0657(09)70115-8 [Google Scholar]
  22. Bahrami, A., Soltani, N., Pech-Canul, M., & Gutiérrez, C. (2015). Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives. Critical Reviews in Environmental Science and Technology. DOI: 10.1080/10643389.2015.1077067 [Google Scholar]
  23. Yusoff, S. (2016). Renewable energy from palm oil-innovation on effective utilization of waste. Journal of Cleaner Production 14, 87–93. DOI: 10.1016/j.jclepro.2004.07.005 [Google Scholar]
  24. Hall, D., & Scrase, J. (2018). Will biomass be the environmentally friendly fuel of the future? Biomass and Bioenergy, 357–367. DOI: 10.1016/S0961-9534(98)00030-0 [Google Scholar]
  25. Foo, K., & Hameed, B. (2019). Utilization of rice husk ash as novel adsorbent: a judicious recycling of the colloidal agricultural waste. Advances in Colloid and Interface Science 152, 39–47. DOI: 10.1016/j.cis.2009.09.005 [CrossRef] [PubMed] [Google Scholar]
  26. Martinez-Fernández, J., Valera-Feria, F., & Singh, M. (2020). High temperature compressive mechanical behaviour of biomorphic silicon carbide ceramics. Scripta Materiala 43, 813–818. DOI: 10.1016/S1359-6462(00)00494-2 [Google Scholar]
  27. Adediran, A. A., Alaneme, K. K., Oladele, I. O., & Akinlabi, E. T. (2020). Wear characteristics of aluminium matrix composites reinforced with Si-based refractory compounds derived from rice husks. Cogent Engineering, 7(1), 1826634 [CrossRef] [Google Scholar]
  28. Abdulrazaq, A. A., & Mahdi, F.M. (2022). Agricultural waste and natural dolomite for green production of aluminium composites. Cleaner Engineering and Technology, 11. DOI: 10.1016/j.clet.2022.100565 [CrossRef] [Google Scholar]
  29. Ashebir, D., Mengesha, G., & Sinha, D. (2022). Role of tetra hybrid reinforcements on the behaviour of aluminium metal matrix composites. Journal of Nanomaterials, 1–18. DOI: 10.1155/2022/1988293 [CrossRef] [Google Scholar]
  30. Edoziuno, F., Adediran, A., Odoni, B., Utu, O., & Olayanju, A. (2021). Physicochemical and morphological evaluation of palm kernel shell particulate reinforced aluminium matrix composites. Materials Today: Proceedings, 38, 652–657. DOI: 10.1016/j.matpr.2020.03.641 [CrossRef] [Google Scholar]
  31. Alaneme, K., Adegun, M., Archibong, A., & Okotete, E. (2019). Mechanical and wear behaviour of aluminium hybrid composites reinforced with varied aggregates of alumina and quarry dust. Journal of Chemical Technology and Metallurgy, 54, 1361–1370. [Google Scholar]
  32. Dinaharan, I., Kalaiselvan, K., & Murugan, N. (2017). Influence of rice husk ash particles on microstructure and tensile behaviour of AA6061aluminum matrix composites produced using friction stir processing. Composites Communication, 3, 42–46. org/DOI: 10.1016/j.coco.2017.02.001 [CrossRef] [Google Scholar]
  33. Fatile, O., Akinruli, J., & Amori, A. (2014). Microstructure and mechanical behaviour of stir-cast Al-Mg-Si alloy matrix hybrid composite reinforced with corn cob ash and silicon carbide. 4, 251. [Google Scholar]
  34. Bannaravuri, P., & Birru, A. (2018). Strengthening of mechanical and tribological properties of Al-4.5%Cu matrix alloy with the addition of bamboo leaf ash. Results in Physics, 10, 360–373. DOI: 10.1016/j.rinp.2018.06.004 [CrossRef] [Google Scholar]
  35. Adesina, O. S., Adediran, A. A., Akinwande, A. A., Daramola, O. O., & Sanyaolu, O. O. (2022). Modeling and optimizing the tensile behaviour of developed aluminum hybrid composite. Surface Review and Letters (SRL), 29(9), 1–20. DOI: 10.7176/JEES/10-6-11 [Google Scholar]
  36. Alaneme, K., Bodunrin, M., & Awe, A. (2018). Microstructure, mechanical and fracture properties of groundnut shell ash and silicon carbide dispersion strengthened aluminium matrix composites. Journal of King Saud University-. Engineering Science, 30(1), 96–103. https://doi.org/10.1016/j.jksues.2016.01.001 [CrossRef] [Google Scholar]
  37. Atuanya, C., Ibhadode, A., & Dagwa, I. (2012). Effects of breadfruit seed hull ash on the microstructures and properties of Al-Si-Fe alloy/breadfruit seed hull ash particulate composites. Results in Physics, 2, 142–149. DOI: 10.1016/j.rinp.2012.09.003 [CrossRef] [Google Scholar]
  38. Kanth, U., Rao, P., & Krishna, M. (2019). Mechanical behaviour of fly ash/SiC particles reinforced Al-Zn alloy-based metal matrix composites fabricated by stir casting method. Journal of Materials Research and Technology, 8, 737–744. DOI: 10.1016/j.jmrt.2018.06.003 [CrossRef] [Google Scholar]
  39. Mohanty, A., Misra, M., & Drzal, L. (2012). Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. Journal of Polymers and the Environment 10, 19–26. DOI: 10.1023/A:1021013921916 [Google Scholar]
  40. Bodunrin, M., Alaneme, K., & Chown, L. (2015). Aluminium matrix hybrid composites: A review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. Journal of Materials Research and Technology, 4, 434–445. DOI: 10.1016/j.jmrt.2015.05.003 [CrossRef] [Google Scholar]
  41. Kondoh, K., & Luangvaranunt, T. (2013). New process to fabricate magnesium composites using SiO2 glass scraps. Materials Transactions 44, 2468–2474. DOI: 10.2320/matertrans.44.2468 [Google Scholar]
  42. Adediran, A. A. (2021). Evaluation of the properties of Al-6061 alloy reinforced with particulate waste glass. Scientific African, 1–9. DOI: 10.1016/j.sciaf.2021.e00812 [Google Scholar]
  43. Mohajerani, A., Tanriverdi, T., Nguyen, B., Wong, K., Dissanayake, H., Johnson, L., Rezaei, A. (2017). Physico-mechanical properties of asphalt concrete incorporated with encapsulated cigarette butts. Construction and Building Materials, 153, 69–80. DOI: 10.1016/j.conbuildmat.2017.07.091 [CrossRef] [Google Scholar]
  44. Rajabipour, F., Maraghechi, H., & Fischer, G. (2010). Investigating the alkali-silica reaction of recycled glass aggregates in concrete materials. Journal of Materials in Civil Engineering, 22, 1201–1208. DOI: 10.1061/(ASCE)MT.1943-5533.0000126 [CrossRef] [Google Scholar]
  45. Degirmenci, N., Yilmaz, A., & Cakir, O. (2011). Utilization of waste glass as sand replacement in cement mortar. Indian Journal of Engineering and Material Science, 18, 303–308. Retrieved from http://nopr.niscpr.res.in/handle/123456789/12896 [Google Scholar]
  46. Malik, M., Bashir, M., Ahmad, S., Tariq, T., & Chowdhary, U. (2013). Study of concrete involving the use of waste glass as partial replacement of fine aggregates. J. Eng. Mech., 6, 8–13. doi:http://dx.doi.org/10.13140/RG.2.2.21048.06401 [Google Scholar]
  47. Malik, M., Manzoor A., Ahmad, B., Asima, S., Ali, R., & Bashir, M. (2014). Positive potential of partial replacement of fine aggregates by waste glass (<600 micron) in concrete. International Journal of Civil Engineering and Technology, 5, 146–153. Retrieved from http://www.iaeme.com/Ijciet.asp [Google Scholar]
  48. Ismail, Z., & Al-Hashmi, E. (2009). Recycling of waste glass as a partial replacement for fine aggregate in concrete. Waste Management, 29, 655–659. DOI: 10.1016/j.wasman.2008.08.012 [CrossRef] [Google Scholar]
  49. Park, S., Lee, B., & Kim, J. (2004). Studies on mechanical properties of concrete containing waste glass aggregate. Cem. Concr. Res., 34, 2181–2189. DOI: 10.1016/j.cemconres.2004.02.006 [CrossRef] [Google Scholar]
  50. Taha, B., & Nounu, G. (2008). Properties of concrete contains mixed colour waste recycled glass as sand and cement replacement. Construction and Building Materials, 22, 713–720. DOI: 10.1016/j.conbuildmat.2007.01.019 [CrossRef] [Google Scholar]
  51. Paranavithana, S., & Mohajerani, A. (2003). The effects of mixing and compaction on volumetric properties of an asphalt concrete containing recycled concrete aggregates, Aust. Geomech., 32(2), 59–64. Retrieved from http://trove.nla.gov.au/work/15919642? [Google Scholar]
  52. Paranavithana, S., & Mohajerani, A. (2006). Effects of recycled concrete aggregates on properties of asphalt concrete. Resources, Conservation and Recycling, 148(1), 1–12. DOI: 10.1016/j.resconrec.2005.12.009 [CrossRef] [Google Scholar]
  53. Yu, R., Van Onna, D., Spiesz, P., Yu, Q., & Brouwers, H. (2016). Development of ultra- lightweight fibre reinforced concrete applying expanded waste glass. Journal of Cleaner Production, 112, 690.doi.org/DOI: 10.1016/j.jclepro.2015.07.082 [CrossRef] [Google Scholar]
  54. Wubieneh, T., & Tegegne, S. (2022). Fabrication and characterization of Aluminum (Al-6061) matrix composite reinforced with glass for reengineering applications. Journal of Nanomaterials, 1–8. DOI: 10.1155/2022/8409750 [CrossRef] [Google Scholar]
  55. Flores-Vélez, L., Chávez, J., Hernández, L., & Dominguez, O. (2011). Characterization and Properties of Aluminum Composite Materials Prepared by Powder Metallurgy Techniques Using Ceramic Solid Wastes. Materials and Manufacturing Processes 16, 1–16. DOI: 10.1081/AMP-100103693 [Google Scholar]
  56. Halli, P., Hamuyuni, J., Leikola, M., & Lundstrom, M. (2018). Developing a sustainable solution for recycling electric arc furnace dust via organic acid leaching. Minerals Engineering, 124, 1.doi.org/DOI: 10.1016/j.mineng.2018.05.011 [CrossRef] [Google Scholar]
  57. Alsheyab, M., & Khedaywi, T. (2013). Effect of electric arc furnace dust (EAFD) on properties of asphalt cement mixture. Resources, Conservation and Recycling, 70, 38. [CrossRef] [Google Scholar]
  58. Fares, G., Al-Zaid, R., Fauzi, A., Alhozaimy, A., Al-Negheimish, A., & Khan, M. (2016). Performance of optimized electric arc furnace dust-based cementitious matrix compared to conventional supplementary cementitious materials. Construction and Building Materials, 112, 210–221. DOI: 10.1016/j.conbuildmat.2016.02.068 [CrossRef] [Google Scholar]
  59. Magalhaes, M., Faleschini, F., Pellegrino, C., & Brunelli, K. (2017). Cementing efficiency of electric arc furnace dust in mortars. Construction and Building Materials, 157, 141–150. DOI: 10.1016/j.conbuildmat.2017.09.074 [CrossRef] [Google Scholar]
  60. Stathopoulos, V., Papandreou, A., Kanellopoulou, D., & Stournaras, C. (2013). Structural ceramics containing electric arc furnace dust. Journal of Hazardous Materials, 262, 91–99. DOI: 10.1016/j.jhazmat.2013.08.028 [CrossRef] [PubMed] [Google Scholar]
  61. Torres, A., Miranda, J., Garcia, J., Narvaez, L., Hernandez, R., & Dominguez, O. (1999, July 5-9). Composite materials of aluminium/granulated slag and aluminium/arc-furnace dust prepared by powder metallurgy techniques. Paris, France. [Google Scholar]
  62. Alves, E., Amaro, D., Silva, E., Filho, O., & Alves, K. (2018). Study on effect of EAFD particulate reinforcement in AA7075 aluminium matrix composites. Materials Research, 21(6), 1–6. DOI: 10.1590/1980-5373-MR-2017-0779 [CrossRef] [Google Scholar]
  63. Mantry, S., Behera, D., Mishra, S., Debasish, D., Jha, B., & Mishra, B. (2013). Erosive wear analysis of plasma-sprayed Cu Slag-Al composite coatings. Tribology Transactions 56, 196–202. DOI: 10.1080/10402004.2012.737503 [CrossRef] [Google Scholar]
  64. Yi, H., Xu, G., Cheng, H., Wang J., Wan, Y., & Chen, H. (2012). An overview of utilization of steel slag. Procedia Environmental Sciences, 16, 791–801. DOI: 10.1016/j.proenv.2012.10.108 [CrossRef] [Google Scholar]
  65. Murthy, I., Babu, N., & Rao, J. (2014). Comparative studies on microstructure and mechanical properties of granulated blast furnace slag and fly ash reinforced AA2024 composites. Journal of Minerals and Materials Characterization and Engineering, 2(4). doi:DOI:DOI: 10.4236/jmmce.2014.24037 [Google Scholar]
  66. Boopathi, M., Prabu, R., & Vijayaraj, M. (2020). Taguchi method analysis of machining properties of Al-slag/fly ash hybrid composites. Turkish Journal of Computer and Mathematics Education, 11(3), 1596–1603. [Google Scholar]
  67. Paranthaman, P., Gopal, P., & Kumar, N. (2019). Characterization of economical aluminium MMC reinforced with weld slag particles. I. Advances in Manufacturing Technology, Hiremath S.S. et al. (eds.), Lecture Notes in Mechanical Engineering, doi:https://10.1007/978-981-13-6374-0_2 [Google Scholar]
  68. Chiang, P. C., & Pan, S. Y. (2017). Carbon dioxide mineralization and utilization (pp. 1–452). Singapore: Springer Singapore. [Google Scholar]
  69. Singh, S., Rekha, P., & Surya, M. (2020). Utilization of Linz-Donawitz slag from steel industry for waste minimization. Journal of Material Cycles and Waste Management, 22, 611–627. DOI: 10.1007/s10163-020-00981-z [CrossRef] [Google Scholar]
  70. Lim, J., Chew, L., Chang, T., Tezara, C., & Yazdi, M. (2016). Overview of steel slag application and utilization. MATEC Web of Conferences, (p. 74). DOI: 10.1051/matecconf/20167400026 [Google Scholar]
  71. Dondi, G., Mazzotta, F., Lantieri, C., Cuppi, F., Vignali, V., & Sangiovanni, C. (2021). Use of steel slag as an alternative to aggregate and filler in road pavements. Materials, 14, 345. DOI: 10.3390/ma14020345 [CrossRef] [PubMed] [Google Scholar]
  72. Deus, A., Bertani, R., Meirelles, G., Soares, A., Moreira, L., Büll, L., & Fernandes, D. (2018). The comprehensive utilization of steel slag in agricultural soils. In: Recovery and Utilization of Metallurgical Solid Waste (eds. Zhang, Y.). Intech Open. doi: 10.5772/intechopen.81440 [Google Scholar]
  73. Dubey, S., Singh, A., & Kushwah, S. (2019). Utilization of iron and steel slag in building construction. AIP Conference Proceedings, (p. 2158). DOI: 10.1063/1.5127156 [Google Scholar]
  74. Guo, X., & Shi, H. (2013). Utilization of steel slag powder as a combined admixture with ground granulated blast-furnace slag in cement-based materials. Journal of Materials in Civil Engineering, 25(12). DOI: 10.1061/(ASCE)MT.1943-5533.0000760 [Google Scholar]
  75. Li, Z., Shen, A., Yang, X., Guo, Y., & Liu, Y. (2022). A review of steel slag as a substitute for natural aggregate applied to cement concrete. Road Materials and Pavement Design, 24(2), 537–559. DOI: 10.1080/14680629.2021.2024241 [Google Scholar]
  76. Prasad, S., & Krishna, R. (2018). Production and mechanical properties of A356.2/RHA composites. International Journal of Advanced Science and Technology 33, 51–58. [Google Scholar]
  77. Acharya, S., Dikshit, V., & Mishra, P. (2018). Erosive wear behaviour of red mud-filled metal matrix composite. Journal of reinforced plastics and composites 27, 145. [Google Scholar]
  78. Rajesh, S., Rajakarunakaran, S., & Pandian, R. (2012). Modeling and optimization of sliding specific wear and coefficient of friction of aluminum based red mud metal matrix composite using Taguchi method and response surface methodology Materials Physics and Mechanics 15, 150. [Google Scholar]
  79. Prasad, N., & Acharya, S. (2016). Development and characterization of metal matrix composite using red Mud an industrial waste for wear resistant applications. National Institute of Technology. [Google Scholar]
  80. Khezri, S., Shariat, S., & Tabibian, S. (2012). Evaluation of extracting titanium dioxide from water-based paint sludge in auto-manufacturing industries and its application in paint water-based paint sludge in auto-manufacturing industries and its application in paint. Toxicology and Industrial Health 29, 697–703. DOI: 10.1177/0748233711430977 [Google Scholar]
  81. Nakouzi, S., Mielewski, D., Ball, J., Kim, B., Salemeen, I., Bauer, D., & Narula, C. (2008). A novel approach to paint sludge recycling: Reclaiming of paint sludge components as ceramic composites and their applications in reinforcement of metals and polymers. Journal of Materials Research 13, 53–60. doi:DOI: https://doi.org/10.1557/JMR.1998.0008 [CrossRef] [Google Scholar]
  82. Fukumoto, I., Mekaru, S., Shibata, S., & Nakayama, K. (2016). Fabrication of composite material using alumina agglomerated sludge and aluminum powder by spark plasma sintering. JSME International Journal Series A 49, 91–94. DOI: 10.1299/jsmea.49.91 [Google Scholar]
  83. Zimakov, S., Pihl, T., Kulu, P., Antonov, M., & Mikli, V. (2013). Applications of recycled hard metal powder. Proceedings of the Estonian Academy of Sciences: Engineering, 304–316. [Google Scholar]
  84. Žkin, A., Hussainova, I., Katsich, C., Kulu, P., & Goljandin, D. (2013). Wear Behaviour of Recycled Hard Particle Reinforced NiCrBSi Hard facings Deposited by Plasma Transferred Arc (PTA) Process. Key Engineering Materials 527, 179.doi.org/DOI: 10.4028/www.scientific.net/KEM.527.179 [Google Scholar]
  85. Knibbs, N., & Pehrson, A. (2009). Utilizing colliery shale in the making of cementitious products, USA: US patent, US. doi.org%2FDOI: 10.1080%2F10643389.2015.1077067 [Google Scholar]
  86. Siva, S., Ganguly, R., Srinivasarao, G., & Sahoo, K. (2013). Machinability of aluminum metal matrix composite reinforced with in-situ ceramic composite developed from mines waste colliery shale. Materials and Manufacturing Processes 28, 1082.doi.org/DOI: 10.1080/10426914.2013.811734 [CrossRef] [Google Scholar]
  87. Rohatgi, P., Kim, J., Gupta, N., Alaraj, S., & Daoud, A. (2016). Compressive characteristics of A356/fly ash cenosphere composites synthesized by pressure infiltration technique. Composites Part A: Applied Science and Manufacturing 37, 430–437. DOI: 10.1016/j.compositesa.2005.05.047 [Google Scholar]
  88. Zahi, S., & Daud, A. (2011). Fly ash characterization and application in Al-based Mg alloys. Materials and Design, 32(3), 1337–1346. DOI: 10.1016/j.matdes.2010.09.021 [CrossRef] [Google Scholar]
  89. Bharathi, V., Ramachandra, M., & Srinivas, S. (2017). Influence of Fly Ash content in Aluminium matrix composite produced by stir-squeeze casting on the scratching abrasion resistance, hardness and density levels. Materials Today: Proceedings 4(8), 7397–7405. DOI: 10.1016/j.matpr.2017.07.070 [CrossRef] [Google Scholar]
  90. Dinaharan, I. N. (2016). Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing. Materials Characterization, 118, 149.doi.org/DOI: 10.1016/j.matchar.2016.05.017 [CrossRef] [Google Scholar]
  91. Fan, L., & Juang, S. (2016). Reaction effect of fly ash with Al-3Mg melt on the microstructure and hardness of aluminum matrix composites. Materials Today: Proceedings, 941–949. DOI: 10.1016/j.matdes.2015.10.070 [Google Scholar]
  92. Mallikarjuna, B., Shivanand, H., Reddy, H., & Hanif Ahamadsab, M. (2017). Evaluation of Impact Properties of Fly Ash and S-Glass Reinforced Al-4046 Hybrid Metal Matrix Composites. Materials Today Proceedings, 12285–12290. DOI: 10.1016/j.matpr.2017.09.161 [CrossRef] [Google Scholar]
  93. Rao, R., Ghosh, M., Ganguly, R., Bose, P., & Sahoo, K. (2020). Mechanical properties and age hardening response of Al6061 alloy based composites reinforced with fly ash. Materials Science and Engineering, 6. DOI: 10.1016/j.msea.2019.138823 [Google Scholar]
  94. Narasaraju, G., & Raju, D. (2019). Characterization of Hybrid Rice Husk and Fly ash-Reinforced Aluminium alloy (AlSi10Mg) Composites. Materials Today: Proceedings, 2(5). DOI: 10.1016/j.matpr.2015.07.245 [Google Scholar]
  95. Reddy, B., & Srinivas, C. (2018). Fabrication and Characterization of Silicon Carbide and Fly Ash Reinforced Aluminium Metal Matrix Hybrid Composites. Materials Today: Proceedings, 5(2), 8374–8381. DOI: 10.1016/j.matpr.2017.11.531 [CrossRef] [Google Scholar]
  96. Prastio, B., Seputro, H., & Abdulrahim, M. (2017). The effect of electroless plating on aluminum metal matrix composite reinforcement bottom ash on the density and porosity for propeller applications. Springer Proceedings in Physics, 77–84. DOI: 10.1007/978-3-319-56062-5_7 [CrossRef] [Google Scholar]
  97. Seputro, H., Kastiawan, I., & Utomo, G. (2017). Thermal properties of as-cast bottom ash reinforced aluminum metal matrix composite. Springer Proceedings in Physics, 193, 253.doi.org/DOI: 10.1007/978-3-319-56062-5_22 [CrossRef] [Google Scholar]
  98. Abdulrahim, M., & Seputro, H. (2016). Microstructure and interface bottom ash reinforced aluminum metal matrix composite. Springer Proceedings, 175, 363.Retrieved from http://www.math.rsu.ru/niimpm/strl/welcome.en.html [CrossRef] [Google Scholar]
  99. Yadav, R., Dwivedi, S., Dwivedi, V., & Islam, A. (2021). Microstructure and mechanical testing of Al/graphite/Fly-ash metal matrix composite material. World Journal of Engineering, DOI: 10.1108/WJE-07-2021-0408 [Google Scholar]
  100. Gunwan, Arifin, A., Akbar, M., & Asura, I. (2020). Effect of fly ash content in Aluminum matrix composite through stir casting method on mechanical and physical properties. IOP Conference Series: Materials Science and Engineering, 857, pp. 1–6. DOI: 10.1088/1757-899X/857/1/012008 [Google Scholar]
  101. Santhosh, M., Natrayan, L., Kaliappan, S., Patil, P., Rao, Y., Kumar, T., Paramasivam, P. (2022). Mechanical and wear behaviour of nano-fly ash particle reinforced mg metal matrix composites fabricated by stir casting technique. Journal of Nanomaterials, 2022, 1.doi.org/DOI: 10.1155/2022/5465771 [CrossRef] [Google Scholar]
  102. Karthikeyan, N., Nandhakumar, P., Ekantha, M., & Selvaraj, B. (2019). Characterization study of metal matrix composite aluminium + fly ash + SiC using stir casting method. International Research Journal of Engineering and Technology, 6(1), 720–723. [Google Scholar]
  103. Dhar, A., & Sutradhar, G. (2022). Investigation of mechanical and tribological properties of LM6-fly ash metal matrix composite. International Journal of Surface Engineering and Interdisciplinary Materials Science, 10(1), 1–15. DOI: 10.4018/IJSEIMS.302235 [CrossRef] [Google Scholar]
  104. Kulkarni, S., Meghnani, J., & Lal, A. (2014). Effect of fly ash hybrid reinforcement on mechanical property and density of aluminium 356 alloy. Procedia Materials Science, 5, 746–754. DOI: 10.1016/j.mspro.2014.07.324 [CrossRef] [Google Scholar]
  105. Razzaq, A., Majid, D., Basheer, U., & Aljibori, H. (2021). Research summary on the processing, mechanical and tribological properties of aluminium matrix composites as effected by fly ash reinforcement. Crystals. 11, 1212. doi: https://doi.org/10.3390/cryst11101212 [CrossRef] [Google Scholar]
  106. Adetunla, A., & Akinlabi, E. (2018). Significantly improved mechanical properties of 1100 aluminium alloy via particle reinforcement. European Journal of Engineering Science and Technology, 1(1), 56–62. DOI: 10.33422/EJEST.2018.07.80 [Google Scholar]
  107. Subrahmanyam, B., Krishna, S., Pornima, C., & Rao, A. (2018). Evaluation of the mechanical properties on aluminium alloy 2024 -fly ash metal matrix composite. International Journal of Advanced Mechanical Engineering, 8(1), 1–11 [Google Scholar]
  108. Shankar, K., Jezierski, J., Ramalingam, V., Padmakumar, D., Leena, M., Reghunath, G., & Krishnan, R. (2022). Investigating the effect of fly ash addition on the metallurgical and mechanical behaviour of Al-Si-Mg-Cu alloy for engine cylinder head application. Materials, 15, 5462. https://doi.org/10.3390/ma15155462 [CrossRef] [PubMed] [Google Scholar]
  109. Boopathi, M., Arulshri, K., & Iyandurai, N. (2013). Evaluation of mechanical properties of aluminium alloy 2024 reinforced with silicon carbide and fly ash hybrid metal matrix composites. American Journal of Applied Science, 10(3), 219–229. doi:doi:DOI: 10.3844/ajassp.2013.219.229 [CrossRef] [Google Scholar]
  110. Selvam, J., Smart, R., & Dinaharan, D. (2013). Synthesis and characterization of Al6061-Fly ASHP-SiCp composites by stir casting and compo casting methods. Energy Procedia, 34, 637–646. DOI: 10.1016/j.egypro.2013.06.795 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.