Open Access
Issue |
E3S Web Conf.
Volume 391, 2023
4th International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2023)
|
|
---|---|---|
Article Number | 01038 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/e3sconf/202339101038 | |
Published online | 05 June 2023 |
- A. Marston, Role of advances in chromatographic techniques in phytochemistry, Phytochemistry,, vol. 68, no. 22-24, (2007). doi: 10.1016/j.phytochem.2007.08.004 [Google Scholar]
- J. C. Bellot and J. S. Condoret, Modelling of liquid chromatography equilibria, Process Bioche.,, vol. 28, no. 6, pp. 365–376, (1993). doi: 10.1016/0032-9592(93)80023-A. [CrossRef] [Google Scholar]
- K. Ichi Kasai, Trypsin and affinity chromatography, J. Chromatogr. A, vol. 597, no. 1-2, pp. 3–18, (1992). doi: 10.1016/0021-9673(92)80092-9. [CrossRef] [Google Scholar]
- D. Guillarme, D. T. T. Nguyen, S. Rudaz, and J. L. Veuthey, Method transfer for fast liquid chromatography in pharmaceutical analysis: Application to short columns packed with small particle. Part I: Isocratic separation, Eur. J. Pharm. Biopharm.,, vol. 66, no. 3, pp. 475–482, (2007). doi: 10.1016/j.ejpb.2006.11.027. [CrossRef] [Google Scholar]
- V. Mapelli, L. Olsson, and J. Nielsen, Metabolic footprinting in microbiology: methods and applications in functional genomics and biotechnology, Trends Biotechnol.,, vol. 26, no. 9, pp. 490–497, (2008). doi: 10.1016/j.tibtech.2008.05.008. [CrossRef] [Google Scholar]
- E. González-Burgos, C. Fernández-Moriano, and M.P. Gómez-Serranillos, Current knowledge on Parmelia genus: Ecological interest, phytochemistry, biological activities, and therapeutic potential, Phytochemistry, vol. 165, no. June, p. 112051, (2019). doi: 10.1016/j.phytochem.2019.112051. [Google Scholar]
- C. A. Lucy, Recent advances in ion chromatography: A perspective, J. Chromatogr. A, vol. 739, no. 1-2, pp. 3–13, (1996). doi: 10.1016/0021-9673(96)00034-9. [CrossRef] [Google Scholar]
- F. A. Macías, J. L. G. Galindo, and J. C. G. Galindo, Evolution and current status of ecological phytochemistry, Phytochemistry,, vol. 68, no. 22-24, pp. 2917–2936, (2007). doi: 10.1016/j.phytochem.2007.10.010. [CrossRef] [Google Scholar]
- J. C. Touchstone, History of Chromatography, J. Liq. Chromatogr.,, vol. 16, no. 8, pp. 1647–1665, (1993). doi: 10.1080/10826079308021679. [CrossRef] [Google Scholar]
- J. Meija, M. Montes-Bayón, J. A. Caruso, and A. Sanz-Medel, Integrated mass spectrometry in (semi-)metal speciation and its potential in phytochemistry, TrAC - Trends Anal. Chem., vol. 25, no. 1, pp. 44–51, (2006).doi: 10.1016/j.trac.2005.04.003. [Google Scholar]
- M. Saito, History of supercritical fluid chromatography: Instrumental development, J. Biosci. Bioeng,, vol. 115, no. 6, pp. 590–599, (2013). doi: 10.1016/j.jbiosc.2012.12.008. [CrossRef] [Google Scholar]
- E. Heftmann, Survey of chromatography and electrophoresis, J. Chromatogr. Libr.,, vol. 22, no. PA, pp. A1–A18, (1983).doi: 10.1016/S0301-4770(08)60862-3. [CrossRef] [Google Scholar]
- R. O. B. Wijesekera and C. O. Chichester, The chemistry and technology of cinnamon, C R C Crit. Rev. Food Sci. Nutr.,, vol. 10, no. 1, pp. 1–30, (1978). doi: 10.1080/10408397809527243. [CrossRef] [PubMed] [Google Scholar]
- J. D. Phillipson, Phytochemistry and pharmacognosy, Phytochemistry,, vol. 68, no. 22-24, pp. 2960–2972, (2007) doi: 10.1016/j.phytochem.2007.06.028. [CrossRef] [Google Scholar]
- G. Purcaro, S. Moret, and L. Conte, Hyphenated liquid chromatography-gas chromatography technique: Recent evolution and applications, J. Chromatogr. A,, vol. 1255, pp. 100–111, (2012). doi: 10.1016/j.chroma.2012.02.018. [CrossRef] [Google Scholar]
- S. Gocan, Hyphenated techniques in thin-layer chromatography, Adv. Chromatogr., vol. 47, pp. 353–444, (2009). doi: 10.1201/9781420060379.ch10. [Google Scholar]
- G. Morlock and W. Schwack, Hyphenations in planar chromatography, J. Chromatogr. A, vol. 1217, no. 43, pp. 6600–6609, (2010) doi: 10.1016/j.chroma.2010.04.058. [CrossRef] [Google Scholar]
- D. L. Norwood, J. O. Mullis, and T. N. Feinberg, 7 Hyphenated techniques, Sep. Sci. Technol.,, vol. 8, pp. 189–235, (2007). doi: 10.1016/S0149-6395(07)80013-4. [Google Scholar]
- R. Lobinski and J. Szpunar, Biochemical speciation analysis by hyphenated techniques, Anal. Chim. Acta,, vol. 400, no. 1-3, pp. 321–332, (1999). doi: 10.1016/S0003-2670(99)00628-5. [CrossRef] [Google Scholar]
- M. I. G. S. Almeida, J. M. Estela, and V. Cerdà, Multisyringe flow injection potentialities for hyphenation with different types of separation techniques, Anal. Lett.,, vol. 44, no. 1-3, pp. 360–373, (2011). doi: 10.1080/00032719.2010.500779. [CrossRef] [Google Scholar]
- T. N. Feinberg, Hyphenated characterization techniques, Sep. Sci. Technol.,, vol. 5, no. C, pp. 341–359, (2004). doi: 10.1016/S0149-6395(03)80015-5. [Google Scholar]
- V. Räntzsch, M. Wilhelm, and G. Guthausen, Hyphenated low-field NMR techniques: Combining NMR with NIR, GPC/SEC and rheometry, Magn. Reson. Chem.,, vol. 54, no. 6, pp. 494–501, (2016). doi: 10.1002/mrc.4219. [CrossRef] [Google Scholar]
- H. Seifi, T. Gholami, S. Seifi, S. M. Ghoreishi, and M. Salavati-Niasari, A review on current trends in thermal analysis and hyphenated techniques in the investigation of physical, mechanical and chemical properties of nanomaterials,, vol. 149. Elsevier B.V, (2020). [Google Scholar]
- W. Lorenc, D. Kruszka, P. Kachlicki, J. Kozlowska, and D. Baralkiewicz, Arsenic species and their transformation pathways in marine plants. The usefulness of advanced hyphenated techniques HPLC/ICP-MS and UPLC/ESI-MS/MS in arsenic species analysis, Talanta,, vol. 220, p. 121384, (2020). doi: 10.1016/j.talanta.2020.121384. [CrossRef] [Google Scholar]
- T.D.G., Novel Analytical Techniques used in Identification and Isolation of Impurities in Pharmaceuticals an Overview, J. Pharm. Sci. Res., vol. 12, no. 1, pp. 37–42, (2020). [Google Scholar]
- W. Parys, M. Dolowy, and A. Pyka-Pająk. Current strategies for studying the natural and synthetic bioactive compounds in food by chromatographic separation techniques, Processes, vol. 9, no. 7, (2021). doi: 10.3390/pr9071100. [CrossRef] [Google Scholar]
- D. H. Shewiyo, E. Kaale, P. G. Risha, B. Dejaegher, J. Smeyers-Verbeke, and Y. Vander Heyden, HPTLC methods to assay active ingredients in pharmaceutical formulations: A review of the method development and validation steps, J. Pharm. Biomed. Anal.,, vol. 66, pp. 11–23, (2012). doi: 10.1016/j.jpba.2012.03.034. [CrossRef] [Google Scholar]
- D. Kasote, A. Ahmad, W. Chen, S. Combrinck, and A. Viljoen, HPTLC-MS as an efficient hyphenated technique for the rapid identification of antimicrobial compounds from propolis, Phytochem. Lett.,, vol. 11, pp. 326–331, (2015). doi: 10.1016/j.phytol.2014.08.017. [CrossRef] [Google Scholar]
- P. Hariprasad and N. Ramakrishnan, Chromatographic fingerprint analysis of Rumex vicarious L. by HPTLC technique, Asian Pac. J. Trop. Biomed.,, vol. 2, no. 1 SUPPL., pp. S57–S63, (2012). doi: 10.1016/S2221-1691(12)60130-0. [CrossRef] [Google Scholar]
- S. Sampathkumar and N. Ramakrishnan, Chromatographic fingerprint analysis of Naringi crenulata by HPTLC technique, Asian Pac. J. Trop. Biomed.,, vol. 1, no. SUPPL. 2, pp. S195–S198,(2011). doi: 10.1016/S2221-1691(11)60155-X. [CrossRef] [Google Scholar]
- Y. Mariswamy, W. E. Gnaraj, and J. M. Antonisamy, Chromatographic fingerprint analysis on flavonoid constituents of the medicinally important plant Aerva lanata L. By HPTLC technique, Asian Pac. J. Trop. Biomed.,, vol. 1, no. SUPPL. 1, p. S8, (2011). doi: 10.1016/S2221-1691(11)60112-3. [CrossRef] [Google Scholar]
- S. Gupta and R. Gupta, Detection and quantification of quercetin in roots, leaves, and flowers of Clerodendrum infortunatum L., Asian Pacific J. Trop. Dis.,, vol. 2, no. SUPPL2, pp. S940–S943, (2012). doi: 10.1016/S2222-1808(12)60296-5. [CrossRef] [Google Scholar]
- C. Govindasamy and R. Srinivasan, In vitro antibacterial activity and phytochemical analysis of Catharanthus roseus (Linn.) G. Don., Asian Pac. J. Trop. Biomed.,, vol. 2, no. 1 SUPPL., pp. S155–S158, (2012). doi: 10.1016/S2221-1691(12)60148-8. [CrossRef] [Google Scholar]
- S. Fluoroquinolone, D. S. North, D. Pharm, D. N. Fish, D. Pharm, and J. J. Redington, Evaluations of New Drugs, (1998). [Google Scholar]
- Anesth 1988 PK and Protein Binding with Propofol in Cirrhosis.pdf.”. [Google Scholar]
- K. N. Waliszewski, V. T. Pardio, and S. L. Ovando, A simple and rapid HPLC technique for vanillin determination in alcohol extract, Food Chem.,, vol. 101, no. 3, pp. 1059–1062, (2007). doi: 10.1016/j.foodchem.2006.03.004. [CrossRef] [Google Scholar]
- M. Marcinkowska and D. Baralkiewicz, Multielemental speciation analysis by advanced hyphenated technique - HPLC/ICP-MS: A review, Talanta, vol. 161, pp. 177–204, (2016). doi: 10.1016/j.talanta.2016.08.034. [CrossRef] [Google Scholar]
- G. K. J. Chao and J. C. Suatoni, Determination of phenolic compounds by HPLC, J. Chromatogr. Sci.,, vol. 20, no. 9, pp. 436–440, (1982). doi: 10.1093/chromsci/20.9.436. [CrossRef] [Google Scholar]
- D. Steinmann and M. Ganzera, Recent advances on HPLC/MS in medicinal plant analysis, J. Pharm. Biomed. Anal., vol. 55, no. 4, pp. 744–757, (2011). doi: 10.1016/j.jpba.2010.11.015. [CrossRef] [Google Scholar]
- G. Cimpan and S. Gocan, Analysis of medicinal plants by HPLC: Recent approaches, J. Liq. Chromatogr. Relat. Technol.,, vol. 25, no. 13-15, pp. 2225–2292, (2002). doi: 10.1081/JLC-120014003. [CrossRef] [Google Scholar]
- T. Yi, K. S. Y. Leung, G. H. Lu, H. Zhang, and K. Chan, Identification and determination of the major constituents in traditional Chinese medicinal plant polygonum multiflorum Thunb by HPLC coupled with PAD and ESI/MS, Phytochem. Anal.,, vol. 18, no. 3, pp. 181–187, (2007). doi: 10.1002/pca.963. [CrossRef] [Google Scholar]
- M. Vogeser and C. Seger, A decade of HPLC-MS/MS in the routine clinical laboratory - Goals for further developments, Clin. Biochem., vol. 41, no. 9, pp. 649–662, (2008). doi: 10.1016/j.clinbiochem.2008.02.017. [CrossRef] [Google Scholar]
- D. C. Costa, H. S. Costa, T. G. Albuquerque, F. Ramos, M. C. Castilho, and A. Sanches-Silva, Advances in phenolic compounds analysis of aromatic plants and their potential applications, Trends Food Sci. Technol.,, vol. 45, no. 2, pp. 336–354, (2015). doi: 10.1016/j.tifs.2015.06.009. [CrossRef] [Google Scholar]
- S. Görög, The changing face of pharmaceutical analysis, TrAC - Trends Anal. Chem.,, vol. 26, no. 1, pp. 12–17, (2007). doi: 10.1016/j.trac.2006.07.011. [CrossRef] [Google Scholar]
- H. Weil and T. I. Willams, History of chromatography, Nature,, vol. 166, no. 4232, pp. 1000–1001, (1950) doi: 10.1038/1661000b0. [CrossRef] [Google Scholar]
- J. V. Seeley and S. K. Seeley, Multidimensional gas chromatography: Fundamental advances and new applications, Anal. Chem.,, vol. 85, no. 2, pp. 557–578, (2013) doi: 10.1021/ac303195u. [CrossRef] [PubMed] [Google Scholar]
- S. J. Lehotay and J. Hajšlová, Application of gas chromatography in food analysis, TrAC - Trends Anal. Chem.,, vol. 21, no. 9-10, pp. 686–697, (2002). doi: 10.1016/S0165-9936(02)00805-1. [CrossRef] [Google Scholar]
- F. J. Santos and M. T. Galceran, The application of gas chromatography to environmental analysis, TrAC - Trends Anal. Chem.,, vol. 21, no. 9-10, pp. 672–685, (2002). doi: 10.1016/S0165-9936(02)00813-0. [CrossRef] [Google Scholar]
- C. A. Cramers, H. G. Janssen, M. M. Van Deursen, and P. A. Leclercq, High-speed gas chromatography: An overview of various concepts, J. Chromatogr. A, vol. 856, no. 1-2, pp. 315–329, (1999). doi: 10.1016/S0021-9673(99)00227-7. [CrossRef] [Google Scholar]
- P. Q. Tranchida, P. Donato, F. Cacciola, M. Beccaria, P. Dugo, and L. Mondello, Potential of comprehensive chromatography in food analysis, TrAC - Trends Anal. Chem.,, vol. 52, pp. 186–205, (2013). doi: 10.1016/j.trac.2013.07.008. [CrossRef] [Google Scholar]
- M. Adahchour, J. Beens, R. J. J. Vreuls, A. M. Batenburg, and U. A. T. Brinkman, Comprehensive two-dimensional gas chromatography of complex samples by using a ‘reversed-type’ column combination: Application to food analysis, J. Chromatogr. A, vol. 1054, no. 1-2, pp. 47–55, (2004) doi: 10.1016/j.chroma.2004.07.084. [CrossRef] [Google Scholar]
- P. M. Medeiros and B. R. T. Simoneit, Analysis of sugars in environmental samples by gas chromatography-mass spectrometry, J. Chromatogr. A,, vol. 1141, no. 2, pp. 271–278, (2007) doi: 10.1016/j.chroma.2006.12.017. [CrossRef] [Google Scholar]
- T. Barri and J. Â. Jönsson, Advances and developments in membrane extraction for gas chromatography: Techniques and applications, J. Chromatogr. A, vol. 1186, no. 1-2, pp. 16–38, (2008). doi: 10.1016/j.chroma.2008.02.002. [CrossRef] [Google Scholar]
- L. T. Taylor, Supercritical fluid chromatography for the 21st century, J. Supercrit. Fluids,, vol. 47, no. 3, pp. 566–573, (2009) doi: 10.1016/j.supflu.2008.09.012. [CrossRef] [Google Scholar]
- V. Desfontaine, D. Guillarme, E. Francotte, and L. Nováková, Supercritical fluid chromatography in pharmaceutical analysis, J. Pharm. Biomed. Anal.,, vol. 113, pp. 56–71, (2015). doi: 10.1016/j.jpba.2015.03.007. [CrossRef] [Google Scholar]
- L. T. Taylor, Supercritical fluid chromatography, Anal. Chem.,, vol. 82, no. 12, pp. 4925–4935, (2010) doi: 10.1021/ac101194x. [CrossRef] [PubMed] [Google Scholar]
- R. M. Hannan and H. H. Hill, Analysis of lipids in aging seed using capillary supercritical fluid chromatography, J. Chromatogr. A, vol. 547, no. C, pp. 393–401, (1991) doi: 10.1016/S0021-9673(01)88662-3. [CrossRef] [Google Scholar]
- T. L. Chester, J. D. Pinkston, and D.E. Raynie, Supercritical fluid chromatography and extraction, Anal. Chem., vol. 68, no. 12, pp. 487–514, (1996). doi: 10.1021/a1960017i. [Google Scholar]
- A. Marston, Thin-layer chromatography with biological detection in phytochemistry, J. Chromatogr. A,, vol. 1218, no. 19, pp. 2676–2683, (2011). doi: 10.1016/j.chroma.2010.12.068. [CrossRef] [Google Scholar]
- Ł. M. Ciesla, M. Waksmundzka-Hajnos, K. A. Wojtunik, and M. Hajnos, Thin-layer chromatography coupled with biological detection to screen natural mixtures for potential drug leads, Phytochem. Lett.,, vol. 11, pp. 445–454, (2015). doi: 10.1016/j.phytol.2015.02.005. [CrossRef] [Google Scholar]
- R. Gordillo, Supercritical fluid chromatography hyphenated to mass spectrometry for metabolomics applications, J. Sep. Sci.,, vol. 44, no. 1, pp. 448–463, (2021). doi: 10.1002/jssc.202000805. [CrossRef] [PubMed] [Google Scholar]
- L. Witte, P. Rubiolo, C. Bicchi, and T. Hartmann, Comparative analysis of pyrrolizidine alkaloids from natural sources by gas chromatography-mass spectrometry,” Phytochemistry, vol. 32, no. 1, pp. 187–196, (1992). doi: 10.1016/0031-9422(92)80130-7. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.