Open Access
Issue |
E3S Web Conf.
Volume 391, 2023
4th International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2023)
|
|
---|---|---|
Article Number | 01077 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/e3sconf/202339101077 | |
Published online | 05 June 2023 |
- M.N.P. Sastry, K.D. Devi, K.M. Reddy. Analysis and optimization of machining process parameters using the design of experiments. Industrial Engineering Letters, 2(9), 23–32, (2012). [Google Scholar]
- C. Lu. Study on prediction of surface quality in the machining process. Journal of materials processing technology, 205(1-3), 439–450, (2008). [CrossRef] [Google Scholar]
- P. Kovac, I. Mankova, M. Gostimirovic, M. Sekulic, B. Savkovic. A review of machining monitoring systems. Journal of production engineering, 14(1), 1–6, (2011). [Google Scholar]
- G. Park, M.T. Bement, D.A. Hartman, R.E. Smith, C.R. Farrar. The use of active materials for machining processes: A review. International Journal of Machine Tools and Manufacture, 47(15), 2189–2206, (2007). [CrossRef] [Google Scholar]
- I.S. Jawahir, E. Brinksmeier, R. M'saoubi, D.K. Aspinwall, J.C. Outeiro, Meyer, A.D. Jayal. Surface integrity in material removal processes: Recent advances. CIRP annals, 60(2), 603–626, (2011). [CrossRef] [Google Scholar]
- S. Kara, W. Li. Unit process energy consumption models for material removal processes. CIRP annals, 60(1), 37–40, (2011). [CrossRef] [Google Scholar]
- N.K. Jain, V.K. Jain. Modeling of material removal in mechanical type advanced machining processes: a state-of-art review. International journal of machine tools and manufacture, 41(11), 1573–1635, (2001). [CrossRef] [Google Scholar]
- R.P. Singh, S. Singhal. Rotary ultrasonic machining: a review. Materials and manufacturing processes, 31(14), 1795–1824, (2016). [CrossRef] [Google Scholar]
- O. Çakır, A. Yardimeden, T. Ozben, E. Kilickap. Selection of cutting fluids in machining processes. Journal of Achievements in Materials and Manufacturing Engineering, 25(2), 99–102, (2007). [Google Scholar]
- I. Tuersley, A. Pawaid, I.R. Pashby. Various methods of machining advanced ceramic materials. Journal of Materials Processing Technology, 42(4), 377–390, (1994). [CrossRef] [Google Scholar]
- Y. Natarajan, P.K. Murugesan, M. Mohan, S.A.L.A. Khan. Abrasive Water Jet Machining process: A state of the art of the review. Journal of Manufacturing Processes, 49, 271–322, (2020). [CrossRef] [Google Scholar]
- Y. Natarajan, P.K. Murugesan, M. Mohan, S.A.L.A. Khan. Abrasive Water Jet Machining process: A state of the art of the review. Journal of Manufacturing Processes, 49, 271–322, (2020). [CrossRef] [Google Scholar]
- U.S. Dixit, S.N. Joshi, J.P. Davim. Incorporation of material behavior in modeling of metal forming and machining processes: A review. Materials & Design, 32(7), 3655–3670, (2011). [CrossRef] [Google Scholar]
- A.K. Dubey, V. Yadava. Experimental study of Nd: YAG laser beam machining—An overview. Journal of materials processing technology, 195(1-3), 15–26, (2008). [CrossRef] [Google Scholar]
- Lauwers, B. Surface integrity in hybrid machining processes. Procedia Engineering, 19, 241–251, (2011). [CrossRef] [Google Scholar]
- A. Singh, R. Singh, Effect of powder mixed electric discharge machining (PMEDM) on various materials with different powders: A review. Int. J. Innov. Res. Sci. Technol, 2(3), 164–169, (2015). [Google Scholar]
- B. Bhattacharyya, B.N. Doloi, S.K. Sorkhel. Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials. Journal of Materials Processing Technology, 95(1-3), 145–154, (1999). [CrossRef] [Google Scholar]
- B. Bhattacharyya, J. Munda, M. Malapati. Advancement in electrochemical micro- machining. International Journal of Machine Tools and Manufacture, 44(15), 1577–1589, (2004). [CrossRef] [Google Scholar]
- Z.J. Pei, P.M. Ferreira, S.G. Kapoor, M.B.A.C. Haselkorn. Rotary ultrasonic machining for face milling of ceramics. International Journal of Machine Tools and Manufacture, 35(7), 1033–1046, (1995). [CrossRef] [Google Scholar]
- G. Park, M.T. Bement, D.A. Hartman, R.E. Smith, C.R. Farrar. The use of active materials for machining processes: A review. International Journal of Machine Tools and Manufacture, 47(15), 2189–2206, (2007). [CrossRef] [Google Scholar]
- J. Kozak, K.E. Oczos. Selected problems of abrasive hybrid machining. Journal of Materials Processing Technology, 109(3), 360–366, (2001). [CrossRef] [Google Scholar]
- D. Chandramohan, B. Murali, Machining of Composites-A Review. Academic Journal of Manufacturing Engineering, 12(3), (2014). [Google Scholar]
- A. Equbal, A.K. Sood. Electrical discharge machining: an overview on various areas of research. Manufacturing and Industrial Engineering, 13(1-2), (2014). [CrossRef] [Google Scholar]
- A.W. Hashmi, H.S. Mali, A. Meena, I.A. Khilji, M.F. Hashmi. Machine vision for the measurement of machining parameters: A review. Materials Today: Proceedings, 56, 1939–1946, (2022). [CrossRef] [Google Scholar]
- U. Karaguzel, U. Olgun, E. Uysal, E. Budak, M. Bakkal. Increasing tool life in the machining of difficult-to-cut materials using nonconventional turning processes. The International Journal of Advanced Manufacturing Technology, 77, 1993–2004, (2015). [CrossRef] [Google Scholar]
- M.Y. Khan, P.S. Rao, Electrical discharge machining: vital to manufacturing industries. International Journal of Innovative Technology and Exploring Engineering, 8(11), 1696–1701, (2019). [CrossRef] [Google Scholar]
- P.S. Sreejith, B.K.A. Ngoi. Material removal mechanisms in precision machining of new materials. International Journal of Machine Tools and Manufacture, 41(12), 1831–1843, (2001). [CrossRef] [Google Scholar]
- S. Kara, W. Li. Unit process energy consumption models for material removal processes. CIRP annals, 60(1), 37–40, (2011). [CrossRef] [Google Scholar]
- J.B. Mann, Y. Guo, C. Saldana, W.D. Compton, S. Chandrasekar. Enhancing material removal processes using modulation-assisted machining. Tribology International, 44(10), 1225–1235, (2011). [CrossRef] [Google Scholar]
- C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D.K. Kesim, O. Akçaalan, F.O. Ilday. Ablation-cooled material removal with ultrafast bursts of pulses. Nature, 537(7618), 84–88, (2016). [CrossRef] [PubMed] [Google Scholar]
- I.S. Jawahir, E. Brinksmeier, R. M'saoubi, D.K. Aspinwa, J.C. Outeiro, D. Meyer, A.D. Jayal, Surface integrity in material removal processes: Recent advances. CIRP annals, 60(2), 603–626, (2011). [CrossRef] [Google Scholar]
- S. Schiewer, B. Volesk. Biosorption processes for heavy metal removal. Environmental microbe-metal interactions, 329–362, (2000). [Google Scholar]
- F. Facchini, A. De Chirico, G. Mummolo. Comparative cost evaluation of material removal process and additive manufacturing in the aerospace industry. In Industrial Engineering and Operations Management, I: XXIV IJCIEOM, Lisbon, Portugal, July 18-20 24 (pp. 47–59). Springer International Publishing, (2019). [Google Scholar]
- H. Hocheng, W.T. Lei, H.S. Hsu. Preliminary study of material removal in electrical- discharge machining of SiC/Al. Journal of Materials Processing Technology, 63(1-3), 813–818, (1997). [CrossRef] [Google Scholar]
- J.F. Kahles, M. Field, Paper 4: Surface integrity: A new requirement for surfaces generated by material-removal methods. In Proceedings of the Institution of Mechanical Engineers, Conference Proceedings (Vol. 182, No. 11, pp. 31–45). Sage UK: London, England: SAGE Publications, (1967). [CrossRef] [Google Scholar]
- J.B. Mann, Y. Guo, C. Saldana, H. Yeung, W.D. Compton, S. Chandrasekar, Modulation-assisted machining: a new paradigm in material removal processes. In Advanced Materials Research (Vol. 223, pp. 514–522). Trans Tech Publications Ltd. [Google Scholar]
- Mourtzis, D., Vlachou, E., Milas, N., & Xanthopoulos, N. (2016). A cloud-based approach for maintenance of machine tools and equipment based on shop-floor monitoring. Procedia Cirp, 41, 655–660, (2011). [CrossRef] [Google Scholar]
- J. Lee, H.D. Ardakani, S. Yang, B. Bagheri. Industrial big data analytics and cyber- physical systems for future maintenance & service innovation. Procedia cirp, 38, 3–7, (2015). [CrossRef] [Google Scholar]
- G. Mert, S. Waltemode, J.C. Aurich. How services influence the energy efficiency of machine tools: A case study of a machine tool manufacturer. Procedia CIRP, 29, 287–292, (2015). [CrossRef] [Google Scholar]
- B. Bagheri, S. Yang, H.A. Kao, J. Lee. Cyber-physical systems architecture for self- aware machines in industry 4.0 environment. IFAC-PapersOnLine, 48(3), 1622–1627, (2015). [CrossRef] [Google Scholar]
- R. Teti, K. Jemielniak, G. O’Donnell, D. Dornfeld. Advanced monitoring of machining operations. CIRP annals, 59(2), 717–739, (2010). [CrossRef] [Google Scholar]
- F. Provost, T. Fawcett. Data science and its relationship to big data and data-driven decision making. Big data, 1(1), 51–59, (2013). [CrossRef] [PubMed] [Google Scholar]
- R.Q. Sardinas, M.R. Santana, E.A. Brindis, E. A. Genetic algorithm-based multi- objective optimization of cutting parameters in turning processes. Engineering Applications of Artificial Intelligence, 19(2), 127–133, (2006). [CrossRef] [Google Scholar]
- V.F. Sousa, F.J. Silva. Recent advances in turning processes using coated tools—A comprehensive review. Metals, 10(2), 170, (2020). [CrossRef] [Google Scholar]
- A. Gonzalez-Laguna, J. Barreiro, A. Fernandez-Abia, E. Alegre, V. Gonzalez-Castro. Design of a TCM system based on vibration signal for metal turning processes. Procedia Engineering, 132, 405–412, (2015). [CrossRef] [Google Scholar]
- A. Siddhpura, R. Paurobally. A review of flank wear prediction methods for tool condition monitoring in a turning process. The International Journal of Advanced Manufacturing Technology, 65, 371–393, (2013). [CrossRef] [Google Scholar]
- S. Sharma, J. Singh, A.J. Obaid, A.V. Patyal. Tool-condition Monitoring in turning process of Fe-0.75 Mn-0.51 C steel with coated metal carbide inserts using multi-Sensor fusion strategy: A statistical analysis based ingenious approach. Journal of Green Engineering, 11, 2998–3013, (2021). [Google Scholar]
- M. Sen, H.S. Shan. A review of electrochemical macro-to micro-hole drilling processes. International journal of machine tools and manufacture, 45(2), 137–152, (2005). [CrossRef] [Google Scholar]
- P.F. Zhang, N.J. Churi, Z.J. Pei, C. Treadwell. Mechanical drilling processes for titanium alloys: a literature review. Machining Science and Technology, 12(4), 417–444, (2008). [CrossRef] [Google Scholar]
- C.D. Mize, J.C. Ziegert. Neural network thermal error compensation of a machining center. Precision Engineering, 24(4), 338–346, (2000). [CrossRef] [Google Scholar]
- A.C. Okafor, Y.M. Ertekin. Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics. International Journal of Machine Tools and Manufacture, 40(8), 1199–1213, (2000). [CrossRef] [Google Scholar]
- J. Yuan, J. Ni, J. The real-time error compensation technique for CNC machining systems. Mechatronics, 8(4), 359–380, (1998). [CrossRef] [Google Scholar]
- J. Madison. CNC machining handbook: basic theory, production data, and machining procedures. Industrial Press Inc., (1996). [Google Scholar]
- X. Zhu, S. Xiang, J. Yang, J. Novel thermal error modeling method for machining centers. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(8), 1500–1508, (2015). [CrossRef] [Google Scholar]
- C. Yue, H. Gao, X. Liu, S.Y. Liang. Part functionality alterations induced by changes of surface integrity in metal milling process: a review. Applied Sciences, 8(12), 2550, (2018). [CrossRef] [Google Scholar]
- A.Y. Nikolaev. Simulation of the plain milling process. In IOP conference series: materials science and engineering (Vol. 177, No. 1, p. 012080). IOP Publishing. (2017). [CrossRef] [Google Scholar]
- M. Wan, D.Y. Wen, Y.C. Ma, W.H. Zhang. On material separation and cutting force prediction in micro milling through involving the effect of the dead metal zone. International Journal of Machine Tools and Manufacture, 146, 103452, (2019). [CrossRef] [Google Scholar]
- M. Gostimirovic, P. Kovac, B. Skoric, M. Sekulic. Effect of electrical pulse parameters on the machining performance in EDM, (2011). [Google Scholar]
- M. Gostimirovic, P. Kovac, M. Sekulic. An inverse heat transfer problem for optimization of the thermal process in machining. Sadhana, 36, 489–504, (2011). [CrossRef] [Google Scholar]
- M. Gostimirovic, P. Kovac, M. Sekulic, B. Skoric. Influence of discharge energy on machining characteristics in EDM. Journal of mechanical science and Technology, 26, 173–179, (2012). [CrossRef] [Google Scholar]
- P. Kovac, D. Rodic, V. Pucovsky, B. Savkovic, M. Gostimirovic. Application offuzzy logic and regression analysis for modeling surface roughness in face milling. Journal of Intelligent Manufacturing, 24, 755–762, (2013). [CrossRef] [Google Scholar]
- I.S. Jawahir, X. Wang. Development of hybrid predictive models and optimization techniques for machining operations. Journal of Materials Processing Technology, 185(1-3), 46–59, (2007). [CrossRef] [Google Scholar]
- A.D. Jayal, F. Badurdeen, O.W. Dillon Jr, I.S. Jawahir, I.S. Sustainable manufacturing: Modeling and optimization challenges at the product, process, and system levels. CIRP Journal of Manufacturing Science and Technology, 2(3), 144–152, (2010). [CrossRef] [Google Scholar]
- P.J. Arrazola, T. Özel, D. Umbrello, M. Davies, I.S. Jawahir. Recent advances in the modelling of metal machining processes. Cirp Annals, 62(2), 695–718, (2013). [CrossRef] [Google Scholar]
- W. Li, S. Kara. An empirical model for predicting the energy consumption of manufacturing processes: a case of turning process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(9), 1636–1646, (2011). [CrossRef] [Google Scholar]
- J.R. Duflou, J.W. Sutherland, D. Dornfeld, C. Herrmann, J. Jeswiet, S. Kara, K. Kellens. Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP annals, 61(2), 587–609, (2012). [CrossRef] [Google Scholar]
- M.A. Davies, T. Ueda, R. M'saoubi, B. Mullany, A.L. Cooke. On the measurement of temperature in material removal processes. CIRP annals, 56(2), 581–604, (2007). [CrossRef] [Google Scholar]
- P. Kovac, I. Mankova, M. Gostimirovic, M. Sekulic, B. Savkovic. A review of the experimental techniques for the measurement of temperature generated in material removal processes. Novi Sad, 2010, 13(1), 1, (2010). [Google Scholar]
- P. Kovac, I. Mankova, M. Gostimirovic, M. Sekulic, B. Savkovic. A review of the experimental techniques for the measurement of temperature generated in material removal processes. Novi Sad, 13(1), 1, (2010). [Google Scholar]
- Y. Yildiz, M. Nalbant. A review of cryogenic cooling in machining processes. International Journal of Machine Tools and Manufacture, 48(9), 947–964, (2008). [CrossRef] [Google Scholar]
- J.B. Mann, Y. Guo, C. Saldana, W.D. Compton, S. Chandrasekar. Enhancing material removal processes using modulation-assisted machining. Tribology International, 44(10), 1225–1235, (2011). [CrossRef] [Google Scholar]
- M.A. Davies, T. Ueda, R. M'saoubi, B. Mullany, A.L. Cooke. On the measurement of temperature in material removal processes. CIRP annals, 56(2), 581–604, (2007). [CrossRef] [Google Scholar]
- B. Shiari, R.E. Miller, D.D. Klug. Multiscale simulation of material removal processes at the nanoscale. Journal of the Mechanics and Physics of Solids, 55(11), 2384–2405, (2007). [CrossRef] [Google Scholar]
- Y. Liu, B. Li, L. Kong. Molecular dynamics simulation of silicon carbide nanoscale material removal behavior. Ceramics International, 44(10), 11910–11913, (2018). [CrossRef] [Google Scholar]
- R. Komanduri, S. Varghese, N. Chandrasekaran. On the mechanism of material removal at the nanoscale by cutting. Wear, 269(3-4), 224–228, (2010). [CrossRef] [Google Scholar]
- Y.Y. Ye, R. Biswas, J.R. Morris, A. Bastawros, A. Chandra, Molecular dynamics simulation of nanoscale machining of copper. Nanotechnology, 14(3), 390, (2003). [CrossRef] [Google Scholar]
- C.J. Evans, E. Paul, D. Dornfeld, D.A. Lucca, G. Byrne, M. Tricard, B.A. Mullany. Material removal mechanisms in lapping and polishing. CIRP annals, 52(2), 611–633, (2003). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.