Open Access
Issue |
E3S Web Conf.
Volume 391, 2023
4th International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2023)
|
|
---|---|---|
Article Number | 01078 | |
Number of page(s) | 27 | |
DOI | https://doi.org/10.1051/e3sconf/202339101078 | |
Published online | 05 June 2023 |
- CMC, Material processes, Custom milling and consulting LLC, Fleetwood, (2015) [Google Scholar]
- L. Francis. Introduction to Materials processing, Material processing, Doi: 10.1016/B978-0-12-385132-1.00001-X (2016). [Google Scholar]
- S. Hashmi. Material processes, Reference module in materials science and Materials Engineering, Laser growth and processing of Photonic Devices, pp:1–5, Dulbin City University, Ireland, Elsevier (2016). [Google Scholar]
- CMC, Material processes, Custom milling and consulting LLC, Fleetwood, (2015). [Google Scholar]
- L. Francis. Introduction to Materials processing, Material processing, Doi: 10.1016/B978-0-12-385132-1.00001-X (2016). [Google Scholar]
- B. Friedrich. All solid-state high-power lasers for materials processing, Novel materials processing by advanced electromagnetic Energy sources, pp: 179–184, Osaka, Japan (2005). [Google Scholar]
- P. Stavropoulos, A. Papacharalampopoulos, L. Athanasopoulou. A molecular dynamics- based digital twin for ultrafast laser material removal processes. The International Journal of Advanced Manufacturing Technology, 108(1), 413–426 (2020). [CrossRef] [Google Scholar]
- V.K. Ponnusamy, D.D Nguyen, J. Dharmaraja, S. Shobana, J.R. Banu, R.G. Saratale, S.W. …Bioresource technology - 2019 sciencedirect.com [Google Scholar]
- F. Osakue. Industrial materials, application of material management concept in manufacturing industry (2015). [Google Scholar]
- https://www.msivt.com/news/what-are-the-different-types-of-metal-processing-finishing [Google Scholar]
- T.R. Allen, W. Huang, J.R. Tanner, W. Tan, J.M. Fraser, B.J. Simonds. Energy- coupling mechanisms were revealed through simultaneous keyhole depth and absorptance measurements during laser-metal processing. Physical Review Applied, 13(6), 064070 (2020). [CrossRef] [Google Scholar]
- B.J. Simonds, J. Tanner, A. Artusio-Glimpse, P.A Williams, N. Parab, C. Zhao, & T. Sun. Simultaneous high-speed x-ray transmission imaging and absolute dynamic absorptance measurements during high-power laser-metal processing. Procedia CIRP, 94, 775–779.(2020) [CrossRef] [Google Scholar]
- F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: a review Journal of environmental management, 92(3), 407–418 (2011). [CrossRef] [PubMed] [Google Scholar]
- L. Diels, N. Van der Lelie, L. Bastiaens. New developments in the treatment of heavy metal-contaminated soils. Reviews in Environmental Science and Biotechnology, 1, 75–82 (2002). [CrossRef] [Google Scholar]
- W.S. Chai, J.Y. Cheun, P.S. Kumar, M. Mubashir, Z. Majeed, F. Banat, P.L. Show. A review of conventional and novel materials towards heavy metal adsorption in wastewater treatment application. Journal of Cleaner Production, 296, 126589 (2021). [CrossRef] [Google Scholar]
- X. Wang, Y. Guo, L. Yang, M. Han, J. Zhao, X. Cheng. Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. J. Environ. Anal. Toxicol, 2(7), 154–158 (2012). [CrossRef] [Google Scholar]
- M.M. Brboot, B.A. Abid & N.M. Al-Shuwaik. Removal of heavy metals using chemical precipitation. Eng. Technol. J, 29(3), 595–612. (2011) [Google Scholar]
- M.M. Matlock, B.S. Howerton, D.A. Atwood. Chemical precipitation of heavy metals from acid mine drainage. Water Research, 36(19), 4757–4764 (2002). [CrossRef] [PubMed] [Google Scholar]
- Q. Chen, Y. Yao, X. Li, J. Lu, J. Zhou, Z. Huang. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. Journal of water process engineering, 26, 289–300 (2018). [CrossRef] [Google Scholar]
- M.C. Benalia, L. Youcef, M.G. Bouaziz, S. Achour, H. Menasra. Removal of heavy metals from industrial wastewater by chemical precipitation: mechanisms and sludge characterization. Arabian Journal for Science and Engineering, 47(5), 5587–5599. (2022). [CrossRef] [Google Scholar]
- W. Sun, Q. Wang, Y. Zhou, J. Wu Material and energy flows of the iron and steel industry: Status quo, challenges, and perspectives. Applied Energy, 268, 114946 (2020). [CrossRef] [Google Scholar]
- V. Kumar, J. Singh, P. Kumar. Regression models for removal of heavy metals by water hyacinth (Eichhornia crassipes) from wastewater of pulp and paper processing industry Environmental Sustainability, 3(1), 35–44 (2020). [CrossRef] [Google Scholar]
- L. Haq, A. Raj. Pulp and paper mill wastewater: ecotoxicological effects and bioremediation approaches for environmental safety. Bioremediation of Industrial Waste for Environmental Safety: Volume II: Biological Agents and Methods for Industrial Waste Management, 333–356 (2020). [Google Scholar]
- V. Mymrin, C.L. Pedroso, D.E. Pedroso, M.A. Avanci S.A. Meyer, P.H. Rolim, A.J. Gonçalves. Efficient application of cellulose pulp and paper production wastes to produce sustainable construction materials. Construction and Building Materials, 263, 120604 (2020). [CrossRef] [Google Scholar]
- M. Michelin, D.G. Gomes, A. Romam, L.T Polizeli, J.A. Teixeira. Nanocellulose production: exploring the enzymatic route and residues of pulp and paper industry. Molecules, 25(15), 3411 (2020). [CrossRef] [PubMed] [Google Scholar]
- M. Ruth, T. Harrington Jr. Dynamics of material and energy use in US pulp and paper manufacturing. Journal of Industrial Ecology, 1(3), 147–168 (1997). [CrossRef] [Google Scholar]
- E.S. Abd El-Sayed, M. El-Sakhawy, M.A.M. El-Sakhawy. Non-wood fibers as raw materials for the pulp and paper industry Nordic Pulp & Paper Research Journal, 35(2), 215–230 (2020). [CrossRef] [Google Scholar]
- M.M. Ali, N.A. Muhadi, N. Hashim, A.F. Abdullah, M.R. Mahadi. Pulp and paper production from oil palm empty fruit bunches: A current direction in Malaysia. Journal of Agricultural and Food Engineering, 2, 1–9 (2020). [Google Scholar]
- H. Liu, J. Luo, P. Shukla. Effluent detoxification from the pulp and paper industry using microbial engineering and advanced oxidation techniques. Journal of Hazardous Materials, 398, 122998 (2020). [CrossRef] [PubMed] [Google Scholar]
- W.J. Sagues, H. Jameel, D.L. Sanchez, S. Park. Prospects for bioenergy with carbon capture & storage (BEC'C'S) in the United States pulp and paper industry Energy & Environmental Science, 13(8), 2243–2261 (2020). [CrossRef] [Google Scholar]
- R.M. Kozlowski, M. Mackiewicz-Talarczy. Introduction to natural textile fibres. In Handbook of Natural Fibres (pp. 1–13). Woodhead Publishing (2020). [Google Scholar]
- L.A. Elseify, M. Midani, A.H. Hassanin, T. Hamouda, R. Khiari. Long textile fibers from the midrib of date palm: Physiochemical, morphological, and mechanical properties. Industrial crops and products, 151, 112466 (2020). [CrossRef] [Google Scholar]
- K. Subramanian, S. Chopra, E. Cakin, X. Li, C.S.K Lin. Environmental life cycle assessment of textile bio-recycling-valorizing cotton-polyester textile waste to pet fiber and glucose syrup. Resources, Conservation and Recycling, 161, 104989 (2020). [CrossRef] [Google Scholar]
- M. Roman, D. Balogun, Y. Zhuang, R.E. Gerald, L. Bartlett, R.J. O’Malley, J. Huang. A spatially distributed fiber-optic temperature sensor for applications in the steel industry Sensors, 20(14), 3900 (2020). [CrossRef] [PubMed] [Google Scholar]
- L. Navone, K. Moffitt, K.A. Hansen, J. Blinco, A. Payne, R. Speight. Closing the textile loop: Enzymatic fiber separation and recycling of wool/polyester fabric blends. Waste Management, 102, 149–160 (2020) [CrossRef] [Google Scholar]
- A. Haji, M. Naebe. Cleaner dyeing of textiles using plasma treatment and natural dyes: A review. Journal of cleaner production, 265, 121866 (2020). [CrossRef] [Google Scholar]
- F. Jia, S. Yin, L. Chen, X. Chen. The circular economy in the textile and apparel industry: A systematic literature review. Journal of Cleaner Production, 259, 120728 (2020). [CrossRef] [Google Scholar]
- D.W. Wei, H. Wei, A.C. Gauthier, J. Song, Y. Jin, H. Xiao. Superhydrophobic modification of cellulose and cotton textiles: Methodologies and applications Journal of Bioresources and Bioproducts, 5(1), 1–15 (2020). [CrossRef] [Google Scholar]
- K. Kaminski, M. Jarosz, J. Grudzien, J. Pawlik, F. Zastawnik, P. Pandyra, A.M. Kolodziejczyk. Hydrogel bacterial cellulose: A path to improved materials for new eco- friendly textiles. Cellulose, 27, 5353–5365 (2020). [CrossRef] [Google Scholar]
- D. Ahrendt, A. Romero Karam. Development of a computer-aided engineering- supported process for the manufacturing of customized orthopaedic devices by three- dimensional printing onto textile surfaces. Journal of Engineered Fibers and Fabrics, 15, 1558925020917627 (2020). [CrossRef] [Google Scholar]
- https://www.science.org/doi/10.1126/sciadv.1700782 [Google Scholar]
- M.C. Heller, M.H. Mazor, G.A. Keoleian. Plastics in the US: toward a material flow characterization of production, markets, and end of life. Environmental Research Letters, 15(9), 094034 (2020). [CrossRef] [Google Scholar]
- R. Geyer. Production, use, andfate of synthetic polymers. In Plastic waste and recycling (pp. 13–32). Academic Press (2020). [CrossRef] [Google Scholar]
- C. Khandelwal, M.K. Barua. Prioritizing circular supply chain management barriers using fuzzy AHP: the case of the Indian plastic industry. Global Business Review, 0972150920948818 (2020) [Google Scholar]
- S. Kahlert, C.R. Bening. Plastics recycling after the global pandemic: resurgence or regression? Resources, conservation, and recycling, 160, 104948 (2020). [CrossRef] [PubMed] [Google Scholar]
- X. Zhao, K. Cornish, Y. Vodovotz. Narrowing the gap for bioplastic use in food packaging: an update Environmental Science & Technology, 54(8), 4712–4732 (2020). [CrossRef] [PubMed] [Google Scholar]
- M. Shen, B. Song, G. Zeng, Y. Zhang, W. Huang, X. Wen, W. Tang. Are biodegradable plastics a promising solution to solve global plastic pollution? Environmental Pollution, 263, 114469 (2020). [CrossRef] [Google Scholar]
- K.J. Jem, B. Tan, B. The development and challenges of poly (lactic acid) and poly (glycolic acid). Advanced Industrial and Engineering Polymer Research, 3(2), 60–70 (2020). [CrossRef] [Google Scholar]
- E. Kosior, J. Mitchell. Current industry position on plastic production and recycling. In Plastic waste and recycling (pp. 133–162). Academic Press (2020). [CrossRef] [Google Scholar]
- T.P. Wagner. Reducing single-use plastic shopping bags in the USA. Waste Management, 70, 3–12 (2017). [CrossRef] [Google Scholar]
- D. You, H. Shi, Y. Xi, P. Shao, L.Y.X. Luo. Simultaneous heavy metals removal via in situ construction of multivariate metal-organic gels in actual wastewater and the reutilization for Sb (V) capture. Chemical Engineering Journal, 400, 125359 (2020). [CrossRef] [Google Scholar]
- T. Xu, S. An, C Peng, J. Hu, H. Liu, Construction of large-pore crystalline covalent organic framework as high-performance adsorbent for rhodamine B dye removal Industrial & Engineering Chemistry Research, 59(17), 8315–8322 (2020). [CrossRef] [Google Scholar]
- K.D. Hampson, P. Brandon. Construction 2020-A Vision for Australia's Property and construction industry (2004). [Google Scholar]
- T.D. Akinosho, L.O. Oyedele, M. Bilal, A.O. Ajayi, M.D. Delgado, O.O. Akinade, A.A. Ahmed. Deep learning in the construction industry: A review of the present status and future innovations. Journal of Building Engineering, 32, 101827 (2020). [CrossRef] [Google Scholar]
- S. Perera, S. Nanayakkara, M.N.N. Rodrigo, S. Senaratne, R. Weinand. Blockchain technology: Is it hype or real in the construction industry? Journal of industrial information integration, 17, 100125 (2020). [CrossRef] [Google Scholar]
- A. Ghosh, D.J. Edwards, M.R. Hosseini. Patterns and trends in Internet of Things (IoT) research: future applications in the construction industry Engineering, construction, and architectural management, 28(2), 457–481 (2021). [Google Scholar]
- P. Singh. Blockchain-based security solutions with IoT applications in the construction industry. In IOP conference series: earth and environmental science (Vol. 614, No. 1, p. 012052). IOP Publishing (2020). [CrossRef] [Google Scholar]
- H. Yan, N. Yang, Y. Peng, Y. Ren. Data mining in the construction industry: Present status, opportunities, and future trends. Automation in Construction, 119, 103331 (2020). [CrossRef] [Google Scholar]
- A. Shibani, D. Hassan, N. Shakir. The effects of the pandemic on the construction industry in the UK Mediterranean Journal of Social Sciences, 11(6), 48 (2020). [CrossRef] [Google Scholar]
- K. Kim, G. Lee, S. Kim. A study on the application of blockchain technology in the construction industry KSCE Journal of civil engineering, 24(9), 2561–2571 (2020). [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.