Open Access
Issue
E3S Web Conf.
Volume 391, 2023
4th International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2023)
Article Number 01097
Number of page(s) 16
DOI https://doi.org/10.1051/e3sconf/202339101097
Published online 05 June 2023
  1. Alemayehu, A.Y., & Solomon, L.G., Design of a Solid Rocket Propulsion System. Int J Aeronautics Aerospace Res, 7(2), 224-229. (2020) [CrossRef] [Google Scholar]
  2. Adeniyi, G.O., Nkere, I., Adetoro, L.M., & Sholiyi, O.S., Performance Analysis of a Dual-Fuel Sugar Based Solid Rocket Propellant. European Journal of Engineering and Technology Research, 6(2), 34-41. (2021). [Google Scholar]
  3. Singh, S., Solid rocket motor for experimental sounding rockets. Advances in Aerospace Science and Applications, 3(3), 199-208. (2013). [Google Scholar]
  4. Nakka, R., Richard Nakka's Experimental Rocketry. (2008). [Google Scholar]
  5. Rodic, V., & Petrie, M., The effect of additives on solid rocket propellant characteristics. Scientific Technical Review, 54(3-4), 9-14. (2004). [Google Scholar]
  6. Foltran, A.C., Moro, D.F., Silva, N.D.P.D., Ferreira, A.E.G., Araki, L.K., & Marchi, C.H., Burning rate measurement of KNSu propellant obtained by mechanical press. Journal of Aerospace Technology and Management, 7, 193-199. (2015). [CrossRef] [Google Scholar]
  7. Yang, V. (Ed.)., Solid propellant chemistry combustion and motor interior ballistics 1999 (Vol. 185). AIAA, (2000). [Google Scholar]
  8. Singh, D.A., Sugar Based Rocket Propulsion System-Making, Analysis & Limitations. Int. J. Eng. Trends Appl, 2(5), 30-37. (2015). [Google Scholar]
  9. Jayaraman, K., Chakravarthy, S.R., & Sarathi, R., Accumulation of nano-aluminium during combustion of composite solid propellant mixtures. Combustion, Explosion, and Shock Waves, 46, 21-29. (2010). [CrossRef] [Google Scholar]
  10. Eslami, A., & Hosseini, S.G., Improving safety performance of lactose-fueled binary pyrotechnic systems of smoke dyes. Journal of thermal analysis and calorimetry, 104(2), 671-678., (2011). [CrossRef] [Google Scholar]
  11. I.B. Y'au, & Okeniyi, S.O., Apogee Measurement of a Polyvinyl Chloride Rocket Using a Sugar Composite Propellant and Open Source Computer Rocket Simulation Software. Int. J. Sci. Eng. Appl, 7(9), 303-306., (2018). [Google Scholar]
  12. Arnold, F., DeMallie, I., Florence, L., & Kashinski, D.O., Method for collecting thermocouple data via secured shell over a wireless local area network in real time. Review of scientific instruments, 86(3), 035112. (2015). [CrossRef] [PubMed] [Google Scholar]
  13. Krainov, A.Y., Poryazov, V.A., & Moiseeva, K.M., Numerical Simulation of the Nonstationary Burning of a Solid Propellant in the Combustion Chamber of a Controllable Solid-Propellant Propulsion System. Journal of Engineering Physics and Thermophysics, 1-11. (2022). [Google Scholar]
  14. Bitkin, S.A., Elyukin, N.N., Korepanov, M.A., & Karpov, A.I., The Influence of Flow Regulator Dynamics on the Internal Ballistic Parameters of Multi-Nozzle Solid Propellant Propulsion. Results of Numerical Modeling. Russian Aeronautics, 65(1), 180-185. (2022). [CrossRef] [Google Scholar]
  15. Lipanov, A.M., Kolesnikova, L.N., & Leshchev, A.Y., On the Effectiveness of Using the Real Law of Solid Propellant Burning Rate As a Function of Solid Rocket Motor Pressure. Combustion, Explosion, and Shock Waves, 56, 172-180. (2020). [CrossRef] [Google Scholar]
  16. Glotov, O.G., Poryazov, V.A., Surodin, G.S., Sorokin, I.V., & Krainov, D.A., Combustion features of boron-based composite solid propellants. Acta Astronautica, 204, 11-24. (2023) [CrossRef] [Google Scholar]
  17. Duan, B., Zhang, H., Hua, Z., Wu, L., Bao, Z., Guo, N., … & Shen, R., Burning characteristics and combustion wave model of AP/AN-based laser-controlled solid propellant. Energy, 253, 124007. (2022). [CrossRef] [Google Scholar]
  18. Vijay, C., & Ramakrishna, P.A., Estimation of burning characteristics of AP/HTPB composite solid propellant using a sandwich model. Combustion and Flame, 217, 321-330. (2020). [CrossRef] [Google Scholar]
  19. Poryazov, V.A., Moiseeva, K.M., & Krainov, A.Y., Combustion of a Composite Solid Propellant with Addition of Boron Powder. Combustion, Explosion, and Shock Waves, 58(5), 602-609. (2022). [CrossRef] [Google Scholar]
  20. Jayaraman, K.V.A.K., Anand, K.V., Chakravarthy, S.R., & Sarathi, R., Effect of nano-aluminium in plateau-burning and catalyzed composite solid propellant combustion. Combustion and Flame, 156(8), 1662-1673., (2009). [CrossRef] [Google Scholar]
  21. Jafari, S., Jouki, M., & Soltani, M., Modification of physicochemical, structural, rheological, and organoleptic properties of sweetened condensed milk by maltodextrin, fructose, and lactose. Journal of Food Measurement and Characterization, 15(4), 3800-3810, (2021). [CrossRef] [Google Scholar]
  22. Zhao, F.Q., & Keating, A.F., Functional properties and genomics of glucose transporters. Current genomics, 8(2), 113-128, (2007). [CrossRef] [PubMed] [Google Scholar]
  23. Netto, G.G., Francisquini, J.D.A., de Carvalho, A.F., Stephani, R., & Perrone, I.T., The effect of induced crystallization of lactose on dulce de leche properties. European Food Research and Technology, 249(2), 283-294. (2023). [CrossRef] [Google Scholar]
  24. Shannon, K.S., & Butler, B.W., A review of error associated with thermocouple temperature measurement in fire environments. In Proceedings of the 2nd Fire Ecology Congress. (2003, November). [Google Scholar]
  25. Nalavade, S.P., Patange, A.D., Prabhune, C.L., Mulik, S.S., & Shewale, M.S., Development of 12 channel temperature acquisition system for heat exchanger using max6675 and arduino interface. In Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018) Volume 1 (pp. 119-125). Springer Singapore. (2019). [Google Scholar]
  26. Ao, W., Wen, Z., Liu, L., Liu, P., Gan, Y., Wang, L., & Li, L.K., Controlling the combustion and agglomeration characteristics of a solid composite propellant via a DC electric field. Aerospace Science and Technology, 128, 107766. (2022). [CrossRef] [Google Scholar]
  27. Liu, L., Ao, W., Wen, Z., Wang, Y., Long, Y., Liu, P., … & Li, L.K., Modifying the ignition, combustion and agglomeration characteristics of composite propellants via Al- Mg alloy additives. Combustion and Flame, 238, 111926. (2022). [CrossRef] [Google Scholar]
  28. King, M.K., Aluminum combustion in a solid rocket motor environment. Proceedings of the combustion institute, 32(2), 2107-2114. (2009). [CrossRef] [Google Scholar]
  29. Rami Reddy, S., Murali, G., & Dhana Raju, V., Influence of decanol as fuel additive on the diverse characteristics of the diesel engine powered with mango seed biodiesel blend. International Journal of Ambient Energy, 43(1), 2875-2888. (2022). [CrossRef] [Google Scholar]
  30. Arunkumar, M., Kannan, M., & Murali, G., Experimental studies on engine performance and emission characteristics using castor biodiesel as fuel in CI engine. Renewable Energy, 131, 737-744. (2019). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.