Open Access
Issue
E3S Web of Conf.
Volume 393, 2023
2023 5th International Conference on Environmental Prevention and Pollution Control Technologies (EPPCT 2023)
Article Number 01011
Number of page(s) 9
Section Environmental Assessment and Urban and Rural Resource Planning
DOI https://doi.org/10.1051/e3sconf/202339301011
Published online 02 June 2023
  1. Wang, G.; Li, Y.; Wu, Q.; Wang, Y. The relationship between frozen soil and vegetation in the permafrost regions of the Qinghai-Tibet Plateau and its influence on the alpine ecosystem. Science in China Series D: Earth Sciences. 2006(08):743-754. [Google Scholar]
  2. Zhao, L.; Cheng, G.; Li, S.; Zhao, X.; Wang, S. Freezing-thawing process of permafrost active layer near Wudaoliang on the Tibetan Plateau. Chinese Science Bulletin. 2000, 11, 1205-1211. [CrossRef] [Google Scholar]
  3. Wu, Q.; Shen, Y.; Shi, B. Relationship between frozen soil together with its water-heat process and ecological environment in the Tibetan Plateau. Journal of Glaciology and Geocryology. 2003, 25, 250-255. [Google Scholar]
  4. Wu, Q.; Niu, F. Permafrost changes and engineering stability on the Qinghai-Tibet Plateau. Chinese Science Bulletin. 2013,58(2):115-130. [CrossRef] [Google Scholar]
  5. Wang, Y.; Liu, J.; Wang, G.; Zhou, W. Study on the Effect of Freezing and Thawing Action to Soil Physical and Chemical Characteristics. Geography and Geo-Information Science. 2007,23(2):91-96. [Google Scholar]
  6. Du, Z.; Cai, Y.; Wang, X.; Yan, Y.; Lu, X.; Liu, S. Research progress on the effects of soil freeze-thaw on plant physiology and ecology. Chinese Journal of Eco-Agriculture. 2014,22(1):1-9. [CrossRef] [Google Scholar]
  7. Porporato, A.; Daly, E.; Rodriguez‐Iturbe, I. Soil Water Balance and Ecosystem Response to Climate Change. The American Naturalist. 2004, 164, 625-632. [CrossRef] [PubMed] [Google Scholar]
  8. Fan, K.; Zhang, Q.; Shi, P.; Sun, P.; Yu, H. Evaluation of remote sensing and reanalysis soil moisture products on the Tibetan Plateau. Acta Geographica Sinica. 2018, 73, 1778-1791. [Google Scholar]
  9. Nicolai-Shaw, N. Climate Research Applications of Remote-sensing Based Soil Moisture: Spatial Representativeness, Predictability and Drought Response. Zurich: ETH Zurich, 2016. [Google Scholar]
  10. Yang, Y.; Weng, B.; Bi, W.; Xu, T.; Yan, D.; Ma, J. Climate Change Impacts on Drought-Flood Abrupt Alternation and Water Quality in the Hetao Area, China. Water. 2019, 11, 652. [CrossRef] [Google Scholar]
  11. Hălbac-Cotoară-Zamfir, R.; Keesstra, S.; Kalantari, Z. The impact of political, socio-economic and cultural factors on implementing environment friendly techniques for sustainable land management and climate change mitigation in Romania. Science of The Total Environment. 2019, 654, 418-429. [CrossRef] [Google Scholar]
  12. Muluneh, A.; Stroosnijder, L.; Keesstra, S.; Biazin, B. Adapting to climate change for food security in the Rift Valley dry lands of Ethiopia: supplemental irrigation, plant density and sowing date. The Journal of Agricultural Science. 2016, 155, 703-724. [Google Scholar]
  13. Man, Z.; Weng, B.; Yang, Y.; Gong, X.; Li, M.; Yu, Z. Effects of the Freezing–Thawing Cycle Mode on Alpine Vegetation in the Nagqu River Basin of the Qinghai–Tibet Plateau. Water 2019, 11(10), 2122. [CrossRef] [Google Scholar]
  14. Ni Jian. A simulation of biomes on the Tibetan Plateau and their responses to global climate change [J]. Mountain Research and Development, 2000, 20(1):80-89. [CrossRef] [Google Scholar]
  15. Nan, Z.; Li, S.; Liu, Y. Mean Annual Ground Temperature Distribution on the Tibetan Plateau: Permafrost Distribution Mapping and Further Application. Journal of Glaciology and Geocryology. 2002(02):142-148. [Google Scholar]
  16. Nan Zhuotong, Li Shuxun, Cheng Guodong. Prediction of permafrost distribution on the 100 years [J]. Science in China (Series D: Earth Sciences), 2005,48(6):797-804. [CrossRef] [Google Scholar]
  17. Luo, D.; Jin, H.; Lin, L.; He, R.; Yang, S.; Chang, X. Degradation of Permafrost and Cold-Environments on the Interior and Eastern Qinghai Plateau. Journal of Glaciology and Geocryology. 2012,34(03):538-546. [Google Scholar]
  18. Lin, Z.; Wu, X. Climatic Regionalization of the Qinghai-Xizang Plateau. ACTA GEOGRAPHICA SINICA. 1981(02):49-57. [Google Scholar]
  19. D. A. Walker. Vegetation‐soil‐thaw‐depth relationships along a low‐arctic bioclimate gradient, Alaska: synthesis of information from the ATLAS studies[J]. Permafrost & Periglacial Processes, 2003, 14(2):103-123. [CrossRef] [Google Scholar]
  20. Montzka, C.; Moradkhani, H.; Lutz, Weihermüller.; Franssen, H. J. H.; Canty, M.; Vereecken, H. Hydraulic parameter estimation by remotely-sensed top soil moisture observations with the particle filter. Journal of Hydrology (Amsterdam). 2011, 399, 410-421. [CrossRef] [Google Scholar]
  21. Al-Yaari, A.; Wigneron, J.P.; Ducharne, A.; Kerr, Y.H.; Wagner, W.; De Lannoy, G.; Mialon, A. Global-scale comparison of passive (SMOS) and active (ASCAT) satellite based microwave soil moisture retrievals with soil moisture simulations (MERRA-Land). Remote Sens. Environ. 2014, 152, 614-626. [CrossRef] [Google Scholar]
  22. Guo, W.; Chen, S.; Liu, J. Quaternary Holocene staratigraphy in siping-shuangliao area in the south margin of song-liao basin. Geology and Resources. 2007, 16: 7-11. [Google Scholar]
  23. Lu, Y. Interaction and Joint Regulation between Water and Soil Resources in the Alpine Region: a Case Study in the Naqu River Basin of the Tibetan Plateau. China Institute of Water Resources and Hydropower Research. 2017. [Google Scholar]
  24. Yang, K.; Qin, J.; Zhao, L.; Chen, T.; Han, J.; Lazhu, L.; Chen, Z.; Lv, N.; Ding, H.; Wu, H.; Lin, C. A Multiscale Soil Moisture and Freeze-Thaw Monitoring Network on the Third Pole. Bulletin of the American Meteorolgical Society. 2013, 94: 1907-1916. [CrossRef] [Google Scholar]
  25. Zhao, L.; Yang, K.; Qin, J.; Chen, Y.; Tang, W.; Montzka, H.; Wu, C.; Lin, M.; Han, H. Vereecken Spatiotemporal analysis of soil moisture observations within a Tibetan mesoscale area and its implication to regional soil moisture measurements. Journal of Hydrology, 2013, 482: 92-104. [CrossRef] [Google Scholar]
  26. Su, Z.; Wen, J.; Dente, L.; vander Velde, R.; Wang, L.; Ma, Y.; Yang, K.; Hu, Z. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature for quantifying uncertainties in coarse resolution satellite and model products. Hydrology and Earth System Sciences. 2011, 15:2303-2316. [CrossRef] [Google Scholar]
  27. Lao, J. Soil Agrochemical Analysis. Beijing: Manual. Agricultural publishing house, 1988; pp. 229-236. [Google Scholar]
  28. Wu, C.; Xia, J.; Duan, Z. Review on Detection Methods of Soil Organic Matter. Soils. 2015, 47, 453-460. [Google Scholar]
  29. Yang, M.; Yao, T.; He, Y. The Role of Soil Moisture-Energy Distribution and Melting-Freezing Processes on Seasonal Shift in Tibetan Plateau. Journal of Mountain Science. 2002, 5: 553-558. [Google Scholar]
  30. Romanovsky, V.E.; Osterkamp, T.E. Thawing of active layer on the coastal plain of the Alaskan Arctic. Permafrost and Periglacial Processes. 1997, 8: 1-22. [CrossRef] [Google Scholar]
  31. Osterkamp, T.E.; Romanovsky, V.E. Freezing of active layer on the coastal plain of the Alaskan Arctic. Permafrost and Periiglacial Processes. 1997, 8: 23-44. [CrossRef] [Google Scholar]
  32. Han, L.; Chen, H.; Chen, T.; Fu, Y.; Li, Y. Characteristics and correlation analysis of soil temperature and humidity in Tsaidam Basin. Research of Soil and Water Conservation/Res Soil Water Conserv. 2016, 23, 166-173. [Google Scholar]
  33. Yang, M.; Yao, T.; Ding, Y.; Wang, S.; Chen, X.; Xiao, C. Diurnal variation of soil temperature in different seasons at D110 point in northern Tibet Plateau. Scientia Geographica Sinica. 1999, 6, 570-574. [Google Scholar]
  34. Luo, D.; Jin, H.; He, R.; Wang, X.; Muskett, R.; Marchenko, S.; Romanovsky, V. Characteristics of water-heat exchanges and inconsistent surface temperature changes at an elevational permafrost site on the Qinghai-Tibet Plateau. Journal of Geophysical Research: Atmospheres. 2018. [Google Scholar]
  35. Gao, T.; Zhang, T.; Guo, H.; Hu, Y.; Shang, J.; Zhang, Y. Impacts of the active layer on runoff in an upland permafrost basin, northern Tibetan Plateau. PLOS ONE. 2018, 13, e0192591. [CrossRef] [Google Scholar]
  36. Outcalt, S.; Nelson, F.; Hinkel, K. The Zero-Curtain Effect: Heat and Mass Transfer across an Isothermal Region in Freezing Soil. Water Resources Research. 1990, 26, 1509-1516. [Google Scholar]
  37. Li, Y.; Wang, G.; Zhao, L.; Wu, Q.; Wang, Y.; Zhang, R. Response of Soil Moisture in the Permafrost Active Layer to the Change of Alpine Meadow Coverage on the Tibetan Plateau. Journal of Glaciology & Geocryology. 2010, 32, 157-165. [Google Scholar]
  38. Liu, G.; Wang, G.; Hu, H.; Li, T.; Wang, J.; Ren, D.; Huang, J. Influence of vegetation coverage change on the water and heat process of active layer in permafrost regions of Qinghai Tibet Plateau. Journal of Glaciology & Geocryology. 2009, 31, 89-95. [Google Scholar]
  39. Wang, G.; Zhang, Y. The theory and practice of eco-hydrology in cold regions; Science Press: Beijing, China, 2016; pp. 48-52. [Google Scholar]
  40. Chen, H.; Li, X.; Li, F.; Zhou, B.; Li, C. Change of Soil Temperature and Soil Moisture Content in Typical Degenerated Steppe in Maduo County in the Headstream Region of the Yellow River. Arid Zone Research. 2013, 30, 35-40. [Google Scholar]
  41. Su, N.; Visscher, C.; van Wijk, A.; Lobbezoo, F.; van der Heijden, G. A Prediction Model for Types of Treatment Indicated for Patients with Temporomandibular Disorders. Journal of Oral & Facial Pain and Headache. 2018. [Google Scholar]
  42. Jurasic, M.; Gibson, G.; Wehler, C.; Orner, M.; Jones, J. Caries prevalence and associations with medications and medical comorbidities. Journal of Public Health Dentistry. 2018. [Google Scholar]
  43. Wang, K.; Zhang, T.; Zhong, X. Changes in the timing and duration of the near-surface soil freeze/thaw status from 1956 to 2006 across China. Cryosphere. 2015, 9, 1321-1331. [CrossRef] [Google Scholar]
  44. Cheng, S.; Li, Z.; Lu, K.; Li, P.; Zhang, L. Spatio-Temporal variations in vegetation coverage and correlation with Geomorphologic Factors in Wenanyi Watershed. Journal of Xi’an University of Technology. 2011, 27, 145-150. [Google Scholar]
  45. Zhang, S.; Zhang, Y.; Wang, C.; Zeng, Z. Vegetation Coverage and Its Correlation with Topographic Factors in Upstream Watershed of Minjiang River. Bulletin of Soil and Water Conservation. 2018. [Google Scholar]
  46. Zhang, W.; Zhou, J.; Wang, G.; Wolfgang K.; Cheng, G.; Ye, B.; He, X.; Li, H. Monitoring and Modeling the Influence of Snow Cover and Organic Soil on the Active Layer of Permafrost on the Tibetan Plateau. Journal of Glaciology & Geocryology. 2013, 35, 528-540. [Google Scholar]
  47. Rasi, S.; Seppälä, M.; Rintala, J. Organic silicon compounds in biogases produced from grass silage, grass and maize in laboratory batch assays. Energy. 2013, 52, 137-142. [CrossRef] [Google Scholar]
  48. Van den Brink, P. J.; Ter Braak, C. J. F. Multivariate analysis of stress in experimental ecosystems by Principal Response Curves and similarity analysis. Aquatic Ecology. 1998, 32, 163-178. [CrossRef] [Google Scholar]
  49. Ter Braak, C. J. F.; Šmilauer, P. CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5); Microcomputer Power: Ithaca, USA, 2002; pp. 500. [Google Scholar]
  50. Zheng, J.; Dong, D.; Zhao, D.; He, M.; Li, X. Relationship between Vegetation Community characteristics and its environmental factors in the west slope of Helan Mountain. Acta Ecologica Sinica. 2008, 9, 4559-4567. [Google Scholar]
  51. Hao, Z.; Guo, S.; Ye, J. Canonical correspondence analysis on relationship of woody plants with their environments on the northern slope of Changbai Mountain. Acta Phytoecologica Sinica. 2003, 27, 733-742. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.