Open Access
Issue
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
Article Number 01010
Number of page(s) 6
Section Indoor Environmental Quality (IEQ), Human Health, Comfort and Productivity
DOI https://doi.org/10.1051/e3sconf/202339601010
Published online 16 June 2023
  1. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), ASHRAE -55, Thermal Environmental Conditions for Human Occupancy, (2020). [Google Scholar]
  2. International Organization for Standardization (ISO), ISO 7726, Ergonomics of the thermal environment — Instruments for measuring physical quantities, (1998). [Google Scholar]
  3. Fanger P.O., Thermal comfort. Analysis and applications in environmental engineering., Danish Technical Press, Copenhagen, 1970. https://www.cabdirect.org/cabdirect/abstract/1972 2700268 (Accessed November 16, 2022). [Google Scholar]
  4. J.F. Nicol, M.A. Humphreys, Adaptive thermal comfort and sustainable thermal standards for buildings, Energy Build. 34 (2002) 563–572. https://doi.org/10.1016/S0378-7788(02)00006-3. [CrossRef] [Google Scholar]
  5. M. Takasu, R. Ooka, H.B. Rijal, M. Indraganti, M.K. Singh, Study on adaptive thermal comfort in Japanese offices under various operation modes, Build Environ. 118 (2017) 273–288. https://doi.org/10.1016/j.buildenv.2017.02.023. [CrossRef] [Google Scholar]
  6. G.S. Brager, R.J. de Dear, Thermal adaptation in the built environment: a literature review, Energy Build. 27 (1998) 83–96. https://doi.org/10.1016/S0378-7788(97)00053-4. [CrossRef] [Google Scholar]
  7. M. Shrestha, H.B. Rijal, G. Kayo, M. Shukuya, A field investigation on adaptive thermal comfort in school buildings in the temperate climatic region of Nepal, Build Environ. 190 (2021) 107523. https://doi.org/10.1016/j.buildenv.2020.107523. [CrossRef] [Google Scholar]
  8. B. Gautam, H.B. Rijal, H. Imagawa, G. Kayo, M. Shukuya, Investigation on adaptive thermal comfort considering the thermal history of local and migrant peoples living in sub-tropical climate of Nepal, Build Environ. 185 (2020) 107237. https://doi.org/10.1016/j.buildenv.2020.107237. [CrossRef] [Google Scholar]
  9. Y. Ji, Z. Wang, Thermal adaptations and logistic regression analysis of thermal comfort in severe cold area based on two case studies, Energy Build. 205 (2019) 109560. https://doi.org/10.1016/J.ENBUILD.2019.109560. [CrossRef] [Google Scholar]
  10. C. Turhan, M.F. Özbey, Effect of pre-and post-exam stress levels on thermal sensation of students, Energy Build. 231 (2021) 110595. https://doi.org/10.1016/J.ENBUILD.2020.110595. [CrossRef] [Google Scholar]
  11. Y. Yang, Y. Bai, R. Zhang, X. Zhu, The effect of thermal environment on stress and thermal comfort of college students under acute stress, Indoor and Built Environment. 0 (2022) 1–14. https://doi.org/10.1177/1420326X221086193. [Google Scholar]
  12. J.T. Kim, J.H. Lim, S.H. Cho, G.Y. Yun, Development of the adaptive PMV model for improving prediction performances, Energy Build. 98 (2015) 100–105. https://doi.org/10.1016/J.ENBUILD.2014.08.051. [CrossRef] [Google Scholar]
  13. S. Safarova, J. van Hoof, L. Law, K.K. Zander, S.T. Garnett, Thermal comfort in a tropical savanna climate: The case of home occupants in Darwin, Australia, Energy Build. 266 (2022) 112074. https://doi.org/10.1016/J.ENBUILD.2022.112074. [CrossRef] [Google Scholar]
  14. C. Turhan, N. Alkan, A.E. Çeter, M.F. Özbey, The relation between occupant’s mood state and thermal sensation, CLIMA 2022 Conference. (2022). https://doi.org/10.34641/CLIMA.2022.261. [Google Scholar]
  15. M. Luo, B. Cao, W. Ji, Q. Ouyang, B. Lin, Y. Zhu, The underlying linkage between personal control and thermal comfort: Psychological or physical effects?, Energy Build. 111 (2016) 56–63. https://doi.org/10.1016/J.ENBUILD.2015.11.004. [CrossRef] [Google Scholar]
  16. E. Halawa, J. van Hoof, The adaptive approach to thermal comfort: A critical overview, Energy Build. 51 (2012) 101–110. https://doi.org/10.1016/J.ENBUILD.2012.04.011. [CrossRef] [Google Scholar]
  17. M. Nikolopoulou, K. Steemers, Thermal comfort and psychological adaptation as a guide for designing urban spaces, Energy Build. 35 (2003) 95–101. https://doi.org/10.1016/S0378-7788(02)00084-1. [CrossRef] [Google Scholar]
  18. J.F. Wohlwill, Human adaptation to levels of environmental stimulation, Human Ecology 1974 2:2.2 (1974) 127–147. https://doi.org/10.1007/BF01558117. [CrossRef] [Google Scholar]
  19. F.H. Rohles Jr., Temperature & Temperament: A psychologist looks at comfort, ASHRAE J. (2007) 14–22. [Google Scholar]
  20. H. Wang, L. Liu, Experimental investigation about effect of emotion state on people’s thermal comfort, Energy Build. 211 (2020) 109789. https://doi.org/10.1016/J.ENBUILD.2020.109789. [CrossRef] [Google Scholar]
  21. M.F. Özbey, A.E. ÇETER, Ş. ÖRFİOĞLU, N. Alkan, C. Turhan, Sensitivity Analysis of the Effect of Current Mood States on the Thermal Sensation in Educational Buildings, Indoor Air. 32 (2022) e13073. https://doi.org/10.1111/INA.13073. [Google Scholar]
  22. R.E. Reigal, J.A. Páez-Maldonado, J.L. Pastrana-Brincones, J.P. Morillo-Baro, A. Hernández-Mendo, V. Morales-Sánchez, Physical Activity Is Related to Mood States, Anxiety State and Self-Rated Health in COVID-19 Lockdown, Sustainability 2021, Vol. 13, Page 5444.13 (2021) 5444. https://doi.org/10.3390/SU13105444. [CrossRef] [Google Scholar]
  23. C. Costa, M. Teodoro, G. Briguglio, E. Vitale, F. Giambò, G. Indelicato, E. Micali, S. Italia, C. Fenga, Sleep Quality and Mood State in Resident Physicians during COVID-19 Pandemic, International Journal of Environmental Research and Public Health 2021, Vol. 18, Page 8023. 18 (2021) 8023. https://doi.org/10.3390/IJERPH18158023. [Google Scholar]
  24. M. Barros, M. Aguiar, A. Macedo, A.T. Pereira, Profile of mood states-27: A valid and reliable measure of negative and positive affect for brazilian pregnant women, European Psychiatry. 64 (2021) S386–S387. https://doi.org/10.1192/J.EURPSY.2021.1036. [Google Scholar]
  25. D.M. McNair, M. Lorr., Manual for the Profile of Mood States, Educational and Industrial Testing Services, San Diego, 1971. [Google Scholar]
  26. J.P. Heuchert, D.M. Mcnair, S. Lin, Y.-Y. Hsiao, M. Wang, Test Review: The Profile of Mood States 2nd Edition: http://Dx.Doi.Org/10.1177/0734282913505995.32 (2014) 273–277. https://doi.org/10.1177/0734282913505995. [Google Scholar]
  27. P.C. Terry, A.M. Lane, Normative values for the profile of mood states for use with athletic samples, https://Doi.Org/10.1080/10413200008404215.12 (2008) 93–109. https://doi.org/10.1080/10413200008404215. [Google Scholar]
  28. H. Konuma, H. Hirose, K. Yokoyama, Relationship of the Japanese Translation of the Profile of Mood States Second Edition (POMS 2®) to the First Edition (POMS®), Juntendo Medical Journal. 61 (2015) 517–519. https://doi.org/10.14789/JMJ.61.517. [CrossRef] [Google Scholar]
  29. H. Grove, Robert & Prapavessis, Preliminary evidence for the reliability and validity of an abbreviated Profile of Mood States, Int J Sport Psychol. 23 (1992) 93–109. [Google Scholar]
  30. C. Buratti, D. Palladino, P. Ricciardi, Application of a new 13-value thermal comfort scale to moderate environments, Appl Energy. 180 (2016) 859–866. https://doi.org/10.1016/J.APENERGY.2016.08.043. [CrossRef] [Google Scholar]
  31. R.F. Rupp, N.G. Vásquez, R. Lamberts, A review of human thermal comfort in the built environment, Energy Build. 105 (2015) 178–205. https://doi.org/10.1016/j.enbuild.2015.07.047. [CrossRef] [Google Scholar]
  32. M.K. Singh, R. Ooka, H.B. Rijal, S. Kumar, A. Kumar, S. Mahapatra, Progress in thermal comfort studies in classrooms over last 50 years and way forward, Energy Build. 188–189 (2019) 149–174. https://doi.org/10.1016/j.enbuild.2019.01.051. [Google Scholar]
  33. S. Gao, R. Ooka, W. Oh, Experimental investigation of the effect of clothing insulation on thermal comfort indices, Build Environ. 187 (2021) 107393. https://doi.org/10.1016/j.buildenv.2020.107393. [CrossRef] [Google Scholar]
  34. M. Indraganti, R. Ooka, H.B. Rijal, Thermal comfort in offices in India: Behavioral adaptation and the effect of age and gender, Energy Build. 103 (2015) 284–295. https://doi.org/10.1016/j.enbuild.2015.05.042. [CrossRef] [Google Scholar]
  35. M. Kottek, J. Grieser, C. Beck, B. Rudolf, F. Rubel, World Map of the Köppen-Geiger climate classification updated, Meteorologische Zeitschrift. 15 (2006) 259–263. https://doi.org/10.1127/0941-2948/2006/0130.36. Turkish State Meteorological Service, Extreme Maximum, Minimum and Average Temperatures Measured in Long Period (°C). https://www.mgm.gov.tr/eng/forecast-cities.aspx (Accessed November 16, 2022). [CrossRef] [Google Scholar]
  36. R.J. de Dear, G.S. Brager, Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55, Energy Build. 34 (2002) 549–561. https://doi.org/10.1016/S0378-7788(02)00005-1. [CrossRef] [Google Scholar]
  37. Delta OHM, HD32.3TC - HD32.3TCA - Thermal Microclimate PMV-PPD / WBGT - Delta OHM, (n.d.). https://www.deltaohm.com/product/hd32-3tc-thermal-microclimate-pmv-ppd-wbgt/ (Accessed November 16, 2022). [Google Scholar]
  38. C. Aosong Electronics Co. Ltd, Datasheet of DHT-22 Digital-output Relative Humidity & Temperature Sensor, 2022. [Google Scholar]
  39. IBM, IBM SPSS Statistics 28.0. https://www.ibm.com/support/pages/downloading-ibm-spss-statistics-280. (Accessed November 16, 2022). [Google Scholar]
  40. Kolmogorov, A.N., Sulla determinazione empirica di una legge di distribuzione, Giorn Dell'inst Ital Degli Att 4 (1933) 83–91. [Google Scholar]
  41. N.V. Smirnov, Estimate of deviation between empirical distribution functions in two independent samples. (Russian). Bull. Moscow Univ. 2(2) (1939) 3–16. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.