Open Access
Issue |
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
|
|
---|---|---|
Article Number | 01011 | |
Number of page(s) | 8 | |
Section | Indoor Environmental Quality (IEQ), Human Health, Comfort and Productivity | |
DOI | https://doi.org/10.1051/e3sconf/202339601011 | |
Published online | 16 June 2023 |
- S.K. Sansaniwal, J. Mathur, S. Mathur, Review of practices for human thermal comfort in buildings: present and future perspectives, Https://Doi.Org/10.1080/01430750.2020.1725629.43 2097–2123 (2020) [Google Scholar]
- L. Fang, D.P. Wyon, G. Clausen, P.O. Fanger, Impact of indoor air temperature and humidity in an office on perceived air quality, SBS symptoms and performance, Indoor Air, Suppl. (2004) [Google Scholar]
- C.A. Roulet, N. Johner, F. Foradini, P. Bluyssen, C. Cox, E. De Oliveira Fernandes, B. Müller, C. Aizlewood, Perceived health and comfort in relation to energy use and building characteristics, Build. Res. Inf. (2006) [Google Scholar]
- C. fei Chen, T. Hong, G.Z. de Rubens, S. Yilmaz, K. Bandurski, Z.D. Bélafi, M. De Simone, M.V. Bavaresco, Y. Wang, P. ling Liu, V.M. Barthelmes, J. Adams, S. D’Oca, Ł. Przybylski, Culture, conformity, and carbon? A multi-country analysis of heating and cooling practices in office buildings, Energy Res. Soc. Sci. 61 (2020) [Google Scholar]
- N.M. Bayomi, T. Rakha, J.E. Fernandez, Urban Heat Stress Survivability Simulation under Climate Change Scenarios, in: Proc. Build. Simul. 2019 16th Conf. IBPSA, 2020 [Google Scholar]
- J. Kim, S. Schiavon, G. Brager, Personal comfort models – A new paradigm in thermal comfort for occupant-centric environmental control, Build. Environ. (2018) [Google Scholar]
- P.O. Fanger, Assessment of man’s thermal comfort in practice, Br. J. Ind. Med. (1973) [Google Scholar]
- ISO 7730:2005-Ergonomics of the Thermal Environment – Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria.”, (n.d.) [Google Scholar]
- ASHRAE, Standard 55-2010, Thermal Environmental Conditions for Human Occupancy. Atlanta: American Society of Heating, Refrigerating, and Air-Conditioning Engineers., ASHRAE Inc. (2010) [Google Scholar]
- H.B. Rijal, M.A. Humphreys, J.F. Nicol, Adaptive model and the adaptive mechanisms for thermal comfort in Japanese dwellings, Energy Build. (2019) [Google Scholar]
- J. Van Hoof, Forty years of Fanger’s model of thermal comfort: comfort for all?, Indoor Air. 18 182–201 (2008) [CrossRef] [PubMed] [Google Scholar]
- A personalised thermal comfort model using a Bayesian network | Request PDF, (n.d.). https://www.researchgate.net/publication/299449081_A_personalised_thermal_comfort_model_using_a_Bayesian_network (accessed November 3, 2022) [Google Scholar]
- J. Kim, Y. Zhou, S. Schiavon, P. Raftery, G. Brager, Personal comfort models: Predicting individuals’ thermal preference using occupant heating and cooling behavior and machine learning, Build. Environ. 129 96–106 (2018) [CrossRef] [Google Scholar]
- J.K. Sim, S. Yoon, Y.H. Cho, Wearable sweat rate sensors for human thermal comfort monitoring, Sci. Rep. (2018) [Google Scholar]
- H. Mao, S. Tsuchida, Y. Kim, R. Kanada, T. Hori, T. Terada, M. Tsukamoto, A thermal comfort estimation method by wearable sensors, Proc. ACM Symp. Appl. Comput. 603–610 (2021) [Google Scholar]
- M. Abdallah, C. Clevenger, T. Vu, A. Nguyen, Sensing Occupant Comfort Using Wearable Technologies, Constr. Res. Congr. 2016 Old New Constr. Technol. Converg. Hist. San Juan - Proc. 2016 Constr. Res. Congr. CRC 2016. 940–950 (2016) [Google Scholar]
- S. Liu, S. Schiavon, H.P. Das, M. Jin, C.J. Spanos, Personal thermal comfort models with wearable sensors, Build. Environ. (2019) [Google Scholar]
- S. Liu, S. Schiavon, H.P. Das, M. Jin, C.J. Spanos, Personal thermal comfort models with wearable sensors, Build. Environ. 162 106281 (2019) [Google Scholar]
- X. Wang, D. Li, C.C. Menassa, V.R. Kamat, Investigating the effect of indoor thermal environment on occupants’ mental workload and task performance using electroencephalogram, Build. Environ. 158 120–132 (2019) [CrossRef] [Google Scholar]
- P. Arpaia, N. Moccaldi, R. Prevete, I. Sannino, A. Tedesco, A Wearable EEG Instrument for Real-Time Frontal Asymmetry Monitoring in Worker Stress Analysis, IEEE Trans. Instrum. Meas. 69 8335–8343 (2020) [CrossRef] [Google Scholar]
- Y. Tran, A. Craig, R. Craig, R. Chai, H. Nguyen, The influence of mental fatigue on brain activity: Evidence from a systematic review with meta-analyses, Psychophysiology. 57 e13554 (2020) [CrossRef] [PubMed] [Google Scholar]
- Y. Yao, Z. Lian, W. Liu, Q. Shen, Experimental study on physiological responses and thermal comfort under various ambient temperatures, Physiol. Behav. 93 310–321 (2008) [CrossRef] [Google Scholar]
- B. Lv, C. Su, L. Yang, T. Wu, Effects of stimulus mode and ambient temperature on cerebral responses to local thermal stimulation: An EEG study, Int. J. Psychophysiol. 113 17–22 (2017) [CrossRef] [Google Scholar]
- R. Clausius, Ueber eine veränderte Form des zweiten Hauptsatzes der mechanischen Wärmetheorie, Ann. Phys. 169 481–506 (1854) [CrossRef] [Google Scholar]
- C.E. Shannon, A Mathematical Theory of Communication, Bell Syst. Tech. J. 27 379–423 (1948) [CrossRef] [Google Scholar]
- F. Alù, F. Miraglia, A. Orticoni, E. Judica, M. Cotelli, P.M. Rossini, F. Vecchio, Approximate Entropy of Brain Network in the Study of Hemispheric Differences, Entropy (Basel). 22 1–12 (2020) [Google Scholar]
- S.M. Pincus, Approximate entropy as a measure of system complexity., Proc. Natl. Acad. Sci. U. S. A. 88 2297 (1991) [CrossRef] [PubMed] [Google Scholar]
- J.S. Richman, J.R. Moorman, Physiological time-series analysis using approximate entropy and sample entropy, Am. J. Physiol. Heart Circ. Physiol. 278 (2000) [Google Scholar]
- M. Costa, A.L. Goldberger, C.K. Peng, Multiscale entropy analysis of complex physiologic time series, Phys. Rev. Lett. 89 (2002) [CrossRef] [Google Scholar]
- S.M. Pincus, Assessing serial irregularity and its implications for health, Ann. N. Y. Acad. Sci. 954 245–267 (2001) [Google Scholar]
- G.M.H. Lee, S. Fattinger, A.L. Mouthon, Q. Noirhomme, R. Huber, Electroencephalogram approximate entropy influenced by both age and sleep, Front. Neuroinform. 7 33 (2013) [Google Scholar]
- R. Sneddon, The Tsallis entropy of natural information, Phys. A Stat. Mech. Its Appl. 386 101–118 (2007) [CrossRef] [Google Scholar]
- R. Cabeza, Hemispheric asymmetry reduction in older adults: The HAROLD model, Psychol. Aging. 17 85–100 (2002) [CrossRef] [PubMed] [Google Scholar]
- M. Costa, A.L. Goldberger, C.K. Peng, Multiscale entropy analysis of biological signals, Phys. Rev. E. Stat. Nonlin. Soft Matter Phys. 71 (2005) [Google Scholar]
- A.L. Pisello, I. Pigliautile, M. Andargie, C. Berger, P.M. Bluyssen, S. Carlucci, G. Chinazzo, Z. Deme Belafi, B. Dong, M. Favero, A. Ghahramani, G. Havenith, A. Heydarian, D. Kastner, M. Kong, D. Licina, Y. Liu, A. Luna-Navarro, A. Mahdavi, A. Nocente, M. Schweiker, M. Touchie, M. Vellei, F. Vittori, A. Wagner, A. Wang, S. Wei, Test rooms to study human comfort in buildings: A review of controlled experiments and facilities, Renew. Sustain. Energy Rev. 149 (2021) [Google Scholar]
- F. Vittori, C. Chiatti, I. Pigliautile, A.L. Pisello, The NEXT.ROOM: Design principles and systems trials of a novel test room aimed at deepening our knowledge on human comfort, Build. Environ. 211 108744 (2022) [CrossRef] [Google Scholar]
- I. Pigliautile, S. Casaccia, N. Morresi, M. Arnesano, A.L. Pisello, G.M. Revel, Assessing occupants’ personal attributes in relation to human perception of environmental comfort: Measurement procedure and data analysis, Build. Environ. (2020) [Google Scholar]
- O.E. Krigolson, C.C. Williams, A. Norton, C.D. Hassall, F.L. Colino, Choosing MUSE: Validation of a Low-Cost, Portable EEG System for ERP Research, Front. InNeuroscience. 11 (2017) [Google Scholar]
- M. Abujelala, A. Sharma, C. Abellanoza, F. Makedon, Brain-EE: Brain enjoyment evaluation using commercial EEG headband, ACM Int. Conf. Proceeding Ser. 29-June-2016 (2016) [Google Scholar]
- G. Wiechert, M. Triff, Z. Liu, Z. Yin, S. Zhao, Z. Zhong, R. Zhaou, P. Lingras, Identifying users and activities with cognitive signal processing from a wearable headband, Proc. 2016 IEEE 15th Int. Conf. Cogn. Informatics Cogn. Comput. ICCI*CC 2016. 129–136 (2017) [Google Scholar]
- S.A. Mansi, I. Pigliautile, M. Arnesano, A.L. Pisello, A novel methodology for human thermal comfort decoding via physiological signals measurement and analysis, Build. Environ. 222 109385 (2022) [CrossRef] [Google Scholar]
- S.A. Mansi, I. Pigliautile, C. Porcaro, A.L. Pisello, M. Arnesano, Application of wearable EEG sensors for indoor thermal comfort measurements, Acta IMEKO. 10 214–220 (2021) [CrossRef] [Google Scholar]
- https://mind-monitor.com/, (n.d.) [Google Scholar]
- ISO - ISO 7730:2005 - Ergonomics of the thermal environment — Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, (n.d.). https://www.iso.org/standard/39155.html (accessed November 3, 2022) [Google Scholar]
- A. Ghahramani, G. Castro, B. Becerik-Gerber, X. Yu, Infrared thermography of human face for monitoring thermoregulation performance and estimating personal thermal comfort, Build. Environ. 109 1–11 (2016) [Google Scholar]
- F. Miraglia, F. Vecchio, P.M. Rossini, Brain electroencephalographic segregation as a biomarker of learning, Neural Netw. 106 168–174 (2018) [CrossRef] [Google Scholar]
- F. Vecchio, L. Nucci, C. Pappalettera, F. Miraglia, D. Iacoviello, P.M. Rossini, Time-frequency analysis of brain activity in response to Directional and non-Directional visual stimuli: an Event Related Spectral Perturbations (ERSP) study, J. Neural Eng. (2022) [Google Scholar]
- F. Vecchio, F. Miraglia, C. Marra, D. Quaranta, M.G. Vita, P. Bramanti, P.M. Rossini, Human brain networks in cognitive decline: a graph theoretical analysis of cortical connectivity from EEG data, J. Alzheimers. Dis. 41 113–127 (2014) [CrossRef] [Google Scholar]
- F. Vecchio, F. Miraglia, G. Curcio, R. Altavilla, F. Scrascia, F. Giambattistelli, C.C. Quattrocchi, F. Vernieri, P.M. Rossini, 20. Cortical brain connectivity evaluated by graph theory in dementia: A correlation study between functional and structural data, Clin. Neurophysiol. 127 e137 (2016) [CrossRef] [Google Scholar]
- S. Pincus, Approximate entropy (ApEn) as a complexity measure, Chaos An Interdiscip. J. Nonlinear Sci. 5 110 (1998) [Google Scholar]
- C. Pappalettera, F. Miraglia, M. Cotelli, P.M. Rossini, F. Vecchio, Analysis of complexity in the EEG activity of Parkinson’s disease patients by means of approximate entropy, GeroScience 2022 443. 44 1599–1607 (2022) [Google Scholar]
- F. Vecchio, F. Miraglia, C. Pappalettera, A. Orticoni, F. Alù, E. Judica, M. Cotelli, P.M. Rossini, Entropy as Measure of Brain Networks’ Complexity in Eyes Open and Closed Conditions, Symmetry 2021, Vol. 13, Page 2178. 13 2178 (2021) [CrossRef] [Google Scholar]
- F. Alù, A. Orticoni, E. Judica, M. Cotelli, P.M. Rossini, F. Miraglia, F. Vecchio, Entropy modulation of electroencephalographic signals in physiological aging, Mech. Ageing Dev. 196 (2021) [Google Scholar]
- J.P. Lefaucheur, A. Antal, S.S. Ayache, D.H. Benninger, J. Brunelin, F. Cogiamanian, M. Cotelli, D. De Ridder, R. Ferrucci, B. Langguth, P. Marangolo, V. Mylius, M.A. Nitsche, F. Padberg, U. Palm, E. Poulet, A. Priori, S. Rossi, M. Schecklmann, S. Vanneste, U. Ziemann, L. Garcia-Larrea, W. Paulus, Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS), Clin. Neurophysiol. 128 56–92 (2017) [CrossRef] [Google Scholar]
- L. Montesinos, R. Castaldo, L. Pecchia, On the use of approximate entropy and sample entropy with centre of pressure time-series, J. Neuroeng. Rehabil. 15 1–15 (2018) [CrossRef] [Google Scholar]
- S.M. Pincus, Approximate entropy as a measure of system complexity., Proc. Natl. Acad. Sci. 88 2297–2301 (1991) [NASA ADS] [CrossRef] [Google Scholar]
- Y. Aizawa, T. Harada, H. Nakata, M. Tsunakawa, N. Sadato, K. Nagashima, Assessment of brain mechanisms involved in the processes of thermal sensation, pleasantness/unpleasantness, and evaluation, IBRO Reports. 6 54 (2019) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.