Open Access
Issue
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
Article Number 01017
Number of page(s) 7
Section Indoor Environmental Quality (IEQ), Human Health, Comfort and Productivity
DOI https://doi.org/10.1051/e3sconf/202339601017
Published online 16 June 2023
  1. World Health Organization. Health in 2015: from MDGs, Millennium Development Goals to SDGs, Sustainable Development Goals [Internet]. Geneva: WHO Press; 2016 [cited 2022 Nov 7]. Available from: https://apps.who.int/iris/handle/10665/249586 [Google Scholar]
  2. Li N, Georas S, Alexis N, Fritz P, Xia T, Williams MA, et al. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): Why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. Journal of Allergy and Clinical Immunology. 2016 Aug;138(2):386–96. [CrossRef] [Google Scholar]
  3. Ramírez O, da Boit K, Blanco E, Silva LFO. Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Climate. 2020 Sep;33:100655. [CrossRef] [Google Scholar]
  4. Liati A, Schreiber D, Arroyo Rojas Dasilva Y, Dimopoulos Eggenschwiler P. Ultrafine particle emissions from modern Gasoline and Diesel vehicles: An electron microscopic perspective. Environmental Pollution. 2018 Aug;239:661–9. [CrossRef] [Google Scholar]
  5. Schraufnagel DE. The health effects of ultrafine particles. Exp Mol Med. 2020 Mar;52(3):311–7. [CrossRef] [PubMed] [Google Scholar]
  6. Foord N, Black M, Walsh M. Regional Deposition Of 2.5-7.5 Micron Diameter Inhaled Particles In Healthy Male Non-Smokers. Journal of Aerosol Science. 1978;9(4):343–57. [CrossRef] [Google Scholar]
  7. Emmett PC, Aitken RJ, Hannan WJ. Measurements of the total and regional deposition of inhaled particles in the human respiratory tract. Journal of Aerosol Science. 1982 Jan;13(6):549–60. [CrossRef] [Google Scholar]
  8. Heyder J, Gebhart J, Rudolf G, Schiller C, Stahlhofen W. Deposition of Particles in The human Respiratory Tract in The Size Range 0.005-15 micron. Journal of Aerosol Science. 1986;17(5):811–25. [CrossRef] [Google Scholar]
  9. Lu Phuong N, Dang Khoa N, Inthavong K, Ito K. Particle and inhalation exposure in human and monkey computational airway models. Inhalation Toxicology. 2018 Oct 15;30(11–12):416–28. [CrossRef] [PubMed] [Google Scholar]
  10. Phuong NL, Quang TV, Khoa ND, Kim JW, Ito K. CFD analysis of the flow structure in a monkey upper airway validated by PIV experiments. Respiratory Physiology & Neurobiology. 2020 Jan;271:103304. [CrossRef] [PubMed] [Google Scholar]
  11. Dang Khoa N, Phuong NL, Ito K. Numerical modeling of nanoparticle deposition in realistic monkey airway and human airway models: a comparative study. Inhalation Toxicology. 2020 Jun 6;32(7):311–25. [CrossRef] [PubMed] [Google Scholar]
  12. Islam MS, Saha SC, Sauret E, Gemci T, Gu YT. Pulmonary aerosol transport and deposition analysis in upper 17 generations of the human respiratory tract. Journal of Aerosol Science. 2017 Jun;108:29–43. [CrossRef] [Google Scholar]
  13. Rahman MdM, Zhao M, Islam MS, Dong K, Saha SC. Aging effects on airflow distribution and micron-particle transport and deposition in a human lung using CFD-DPM approach. Advanced Powder Technology. 2021 Oct;32(10):3506–16. [CrossRef] [Google Scholar]
  14. Tena AF, Fernández J, Álvarez E, Casan P, Walters DK. Design of a numerical model of lung by means of a special boundary condition in the truncated branches: Lung model using a velocity mapping technique as boundary condition. Int J Numer Meth Biomed Engng. 2017 Jun;33(6):e2830. [CrossRef] [Google Scholar]
  15. Zore K, Parkhi G, Sasanapuri B, Varghese A. 21th Annual CFD Symposium, August 8-9, 2019, Bangalore. In: Annual CFD Symposium. 2019. p. 0–11. [Google Scholar]
  16. Phuong NL, Ito K. Investigation of flow pattern in upper human airway including oral and nasal inhalation by PIV and CFD. Building and Environment. 2015 Dec;94:504–15. [CrossRef] [Google Scholar]
  17. Phuong NL, Quang TV, Khoa ND, Kim JW, Ito K. CFD analysis of the flow structure in a monkey upper airway validated by PIV experiments. Respiratory Physiology & Neurobiology. 2020 Jan;271:103304. [CrossRef] [PubMed] [Google Scholar]
  18. Weibel E. Morphometry of the Human Lung. Springer-Verlag Berlin Heidelberg GmbH; 1963. [CrossRef] [Google Scholar]
  19. Shelley DA, Sih BL, Ng LJ. An integrated physiology model to study regional lung damage effects and the physiologic response. 2014;19. [Google Scholar]
  20. Phuong NL, Khoa ND, Ito K. Comparative numerical simulation of inhaled particle dispersion in upper human airway to analyse intersubject differences. Indoor and Built Environment. 2020 Jul;29(6):793–809. [CrossRef] [Google Scholar]
  21. Xu C, Khoa ND, Yoo SJ, Zheng X, Shen S, Ito K. Inhalation airflow and ventilation efficiency in subject-specific human upper airways. Respiratory Physiology & Neurobiology. 2021 Mar;285:103587. [CrossRef] [PubMed] [Google Scholar]
  22. Khoa ND, Phuong NL, Takahashi K, Ito K. Transport and deposition of inhaled man-made vitreous and asbestos fibers in realistic human respiratory tract models: An in silico study. Japan Architectural Review. 2022 Oct;5(4):592–608. [CrossRef] [Google Scholar]
  23. Freitas RK, Schröder W. Numerical investigation of the three-dimensional flow in a human lung model. Journal of Biomechanics. 2008 Aug;41(11):2446–57. [CrossRef] [PubMed] [Google Scholar]
  24. Inthavong K, Choi LT, Tu J, Ding S, Thien F. Micron particle deposition in a tracheobronchial airway model under different breathing conditions. Medical Engineering & Physics. 2010 Dec;32(10):1198–212. [Google Scholar]
  25. Kim CS, Jaques PA. Respiratory dose of inhaled ultrafine particles in healthy adults. Brown LM, Collings N, Harrison RM, Maynard AD, Maynard RL, editors. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences. 2000 Oct 15;358(1775):2693–705. [CrossRef] [Google Scholar]
  26. Kleinstreuer C, Zhang Z. An Adjustable Triple-Bifurcation Unit Model for Air-Particle Flow Simulations in Human Tracheobronchial Airways. Journal of Biomechanical Engineering. 2009 Feb 1;131(2):021007. [CrossRef] [PubMed] [Google Scholar]
  27. Deng Q, Deng L, Miao Y, Guo X, Li Y. Particle deposition in the human lung: Health implications of particulate matter from different sources. Environmental Research. 2019 Feb;169:237–45. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.