Issue |
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
|
|
---|---|---|
Article Number | 01017 | |
Number of page(s) | 7 | |
Section | Indoor Environmental Quality (IEQ), Human Health, Comfort and Productivity | |
DOI | https://doi.org/10.1051/e3sconf/202339601017 | |
Published online | 16 June 2023 |
Investigation of Ultrafine Particle Deposition in Human Airway to the 9th Generation of Bronchial Tubes Using Computational Fluid and Particle Dynamics
1 Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, Japan
2 Faculty of Environment, University of Natural Resources and Environment, Ho Chi Minh, Vietnam
* Corresponding author: ndkhoa@kyudai.jp
The behavior of airborne particles in the human respiratory system is closely related to local tissue dosimetry and its associated health risks. The inhalation of these particles is known to be the origin of lung diseases, such as lung cancer, chronic obstructive pulmonary disease, and cardiovascular disease. To compensate for the difficulty of experiments involving volunteers, in silico studies using numerical models have been adopted as promising alternatives. Therefore, this study applied the computational fluid and particle dynamics technique to investigate the deposition of ultrafine particles in the human respiratory tract from the nostrils to the ninth generation of bronchi. A computational model was created using computed tomography images. The airflow patterns were simulated under steady and incompressible conditions at breathing flow rates of 7.5 and 15 L/min, respectively. The discrete phase was simulated for ultrafine particles with aerodynamic diameters of 2–100 nm. Consequently, the validation work confirmed the simulation accuracy for particle sizes > 25 nm. In the lower respiratory system, the total deposition fraction decreased as the particle size increased. In addition, the eighth generation is a focal point of the deposited particles, elucidated by the local deposition fraction. The results of this study will benefit further studies involving health risk assessments and drug delivery.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.