Open Access
Issue |
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
|
|
---|---|---|
Article Number | 03031 | |
Number of page(s) | 5 | |
Section | Energy Efficient and Healthy HVAC systems | |
DOI | https://doi.org/10.1051/e3sconf/202339603031 | |
Published online | 16 June 2023 |
- M. Lebied, F. Sick, Z. Choulli, and A. El Bouardi, “Improving the passive building energy efficiency through numerical simulation–A case study for Tetouan climate in northern of Morocco,” Case Stud. Therm. Eng., vol. 11, pp. 125–134, 2018. [CrossRef] [Google Scholar]
- Planète Énergies, “Maroc : enjeux énergétiques d’une nation émergente,” SAGA DES ÉNERGIES, 2016. https://www.planeteenergies.com/fr/medias/sagas-des-energies/marocenjeux-energetiques-d-une-nation-emergente (accessed Jan. 16, 2021). [Google Scholar]
- IEA, “Fuel report,” Renewables, 2019. https://www.iea.org/reports/renewables-2019. [Google Scholar]
- N. Es-sakali, S. I. Kaitouni, I. Ait Laasri, M. O. Mghazli, M. Cherkaoui, and J. Pfafferott, “Assessment of the energy efficiency for a building energy model using different glazing windows in a semi-arid climate,” in 2022 13th International Renewable Energy Congress (IREC), 2022, pp. 1–5, doi: 10.1109/IREC56325.2022.10001934. [Google Scholar]
- H. Jiang, M. Iandoli, S. Van Dessel, S. Liu, and J. Whitehill, “Measuring Students’ Thermal Comfort and Its Impact on Learning.,” Int. Educ. Data Min. Soc., 2019. [Google Scholar]
- D. Kong, H. Liu, Y. Wu, B. Li, S. Wei, and M. Yuan, “Effects of indoor humidity on building occupants’ thermal comfort and evidence in terms of climate adaptation,” Build. Environ., vol. 155, pp. 298–307, 2019. [CrossRef] [Google Scholar]
- W. Ji, B. Cao, M. Luo, and Y. Zhu, “Influence of short-term thermal experience on thermal comfort evaluations: a climate chamber experiment,” Build. Environ., vol. 114, pp. 246–256, 2017. [CrossRef] [Google Scholar]
- N. Es-sakali, M. Cherkaoui, M. O. Mghazli, and Z. Naimi, “Review of predictive maintenance algorithms applied to HVAC systems,” Energy Reports, vol. 8, pp. 1003–1012, 2022. [CrossRef] [Google Scholar]
- D. Vloemans, F. Dal Dosso, P. Verboven, B. Nicolai, and J. Lammertyn, “Exploiting phase change materials in tunable passive heating system for low-resource point-of-care diagnostics,” Appl. Therm. Eng., vol. 173, p. 115269, 2020. [CrossRef] [Google Scholar]
- B. Nghana and F. Tariku, “Phase change material’s (PCM) impacts on the energy performance and thermal comfort of buildings in a mild climate,” Build. Environ., vol. 99, pp. 221–238, 2016. [CrossRef] [Google Scholar]
- C. Suresh, T. K. Hotta, and S. K. Saha, “Phase Change Material Incorporation Techniques in Building Envelopes for Enhancing the Building Thermal Comfort-A Review,” Energy Build., p. 112225, 2022. [Google Scholar]
- H. B. Kim, M. Mae, Y. Choi, and J. Heo, “Evaluation of shape-stabilization phase change material sheets to improve the heating load reduction based on the indoor application method,” Sol. Energy, vol. 220, pp. 1006–1015, 2021. [CrossRef] [Google Scholar]
- L. F. Cabeza et al., “Behaviour of a concrete wall containing micro‐encapsulated PCM after a decade of its construction,” Sol. Energy, vol. 200, pp. 108– 113, 2020. [CrossRef] [Google Scholar]
- Z. Elmaazouzi, I. Ait Laasri, A. Gounni, M. El Alami, and A. Outzourhit, “Coupled parameters evaluation of three different finned structures for concentrated solar thermal energy storage,” J. Energy Storage, vol. 51, p. 104523, 2022. [CrossRef] [Google Scholar]
- I. Ait Laasri, Z. Elmaazouzi, A. Outzourhit, and M. El Alami, “NUMERICAL STUDY OF LATENT HEAT THERMAL ENERGY STORAGE BASED ON AN INNOVATIVE HEXAGONAL HEAT EXCHANGER: PERFORMANCE EVALUATION,” 2021. [Google Scholar]
- T.-T. Chow and Y. Lyu, “Numerical analysis on the advantage of using PCM heat exchanger in liquid-flow window,” Appl. Therm. Eng., vol. 125, pp. 1218–1227, 2017. [CrossRef] [Google Scholar]
- S. Dabiri, M. Mehrpooya, and E. G. Nezhad, “Latent and sensible heat analysis of PCM incorporated in a brick for cold and hot climatic conditions, utilizing computational fluid dynamics,” Energy, vol. 159, pp. 160–171, 2018. [CrossRef] [Google Scholar]
- S. Lu, B. Xu, and X. Tang, “Experimental study on double pipe PCM floor heating system under different operation strategies,” Renew. Energy, vol. 145, pp. 1280–1291, 2020. [CrossRef] [Google Scholar]
- Ł. Wardziak and M. Jaworski, “Computer simulations of heat transfer in a building integrated heat storage unit made of PCM composite,” Therm. Sci. Eng. Prog., vol. 2, pp. 109–118, 2017. [CrossRef] [Google Scholar]
- M. Song, F. Niu, N. Mao, Y. Hu, and S. Deng, “Review on building energy performance improvement using phase change materials,” Energy Build., vol. 158, pp. 776–793, 2018. [CrossRef] [Google Scholar]
- N. Zhu, M. Wu, P. Hu, L. Xu, F. Lei, and S. Li, “Performance study on different location of double layers SSPCM wallboard in office building,” Energy Build., vol. 158, pp. 23–31, 2018. [CrossRef] [Google Scholar]
- I. Ait Laasri, A. Outzourhit, and M. O. Mghazli, “Multi-parameter analysis of different building forms in a semi-arid climate: Effect of building construction and phase change materials,” Sol. Energy, vol. 250, pp. 220–240, 2023. [CrossRef] [Google Scholar]
- E. Mohseni and W. Tang, “Parametric analysis and optimisation of energy efficiency of a lightweight building integrated with different configurations and types of PCM,” Renew. Energy, vol. 168, pp. 865– 877, 2021. [CrossRef] [Google Scholar]
- A. Lagou, A. Kylili, J. Šadauskienė, and P. A. Fokaides, “Numerical investigation of phase change materials (PCM) optimal melting properties and position in building elements under diverse conditions,” Constr. Build. Mater., vol. 225, pp. 452–464, 2019. [CrossRef] [Google Scholar]
- I. Ait Laasri, N. Es-sakali, A. Outzourhit, and M. O. Mghazli, “Numerical building energy simulation with phase change materials including hysteresis effect for different square building cases in a semi-arid climate,” in 2022 13th International Renewable Energy Congress (IREC), 2022, pp. 1–4, doi: 10.1109/IREC56325.2022.10002008. [Google Scholar]
- R. A. Kishore, C. Booten, M. V. A. Bianchi, J. Vidal, and R. Jackson, “Evaluating cascaded and tunable phase change materials for enhanced thermal energy storage utilization and effectiveness in building envelopes,” Energy Build., vol. 260, p. 111937, 2022. [CrossRef] [Google Scholar]
- J. Lau et al., “Dynamic tunability of phase-change material transition temperatures using ions for thermal energy storage,” Cell Reports Phys. Sci., vol. 2, no. 10, p. 100613, 2021. [CrossRef] [Google Scholar]
- F. Kuznik and J. Virgone, “Experimental investigation of wallboard containing phase change material: Data for validation of numerical modeling,” Energy Build., vol. 41, no. 5, pp. 561– 570, 2009. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.